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Abstract—We consider the problem of path planning above having at most one intersection point with any vertical line
a polyhedral terrain and present a new algorithm that for any in z-direction), while distances are computed in gendigl

p > 1, computes a ¢ + )-approximation to the L,-shortest . TR .
path above a polyhedral terrain in O(% lognloglogn) time metric { > 1). The problem definition is as follows:

and O(nlogn) space, wheren is the number of vertices of the Given ann-vertex polyhedral terrairl’ and two
terrain, and ¢ = 2»~Y/?, This leads to an e-approximation

algorithm for the problem in L; metric, and a (/2 + ¢)-factor pointss andt on or aboveT’, find theL,-shortest
approximation algorithm in Euclidean space. path froms to ¢ that fully stays on or abové'.

Each input coordinate is assumed to be represented using
a rational number whose numerator and denominator are
Computing shortest paths in geometric domains is a fun-dntegers of bit-length at mosy.
damental problem in robot motion planning. There is a large
body of work in this area, a broad overview of which can be
found in the survey by Mitchell [7].

I. INTRODUCTION

We present an efficient algorithm that computed & ¢)-
approximation to thelL;-shortest path above a polyhedral
terrain in O(%Z lognloglogn) time and O(n) space. As

The problem of computing a two-dimensional shortest pathmentioned earlier, there is an exact algorithm for the problem
among a set of polygonal obstacles is widely studied, andn L; metric requiringO(n?logn) time [8]. However, in
there are algorithms [5] solving the problem in the Euclideanpractical applications the input terrain is an approximation of
metric (or in anyL, metric,p > 1) in optimal running time  the reality. Therefore, exact solutions are often meaningless,
O(nlogn), wheren is the total number of vertices of the and efficient approximation algorithms are usually preferred.

polygonal obstacles. In general L, metric, our algorithm computes a factor-

In 3D space, the problem of computing a shortest path(2(P~1/? + <) approximation to the L,-shortest path
among a set of polyhedral obstacles is well-known taitbe  above a polyhedral terrain i@ (% lognloglogn) time and
hard [2] even inL; metric. However, for several classes of O(nlogn) space. This gives &/2 -+ ¢)-approximation algo-
obstacles, exact shortest paths can be computed efficientlyithm for the problem in the Euclidean space. Furthermore,
For example, if obstacles are vertical buildings (prisms) with by picking ¢ appropriately, we will guarantee that the length
a fixed numberk of distinct heights, the Euclidean shortest of the approximate path is at most twice the length of the
path can be computed i®(n% 1) time [4]. Furthermore, optimal path in anyL, metric,p > 1.
if the obstacle is a single “polyhedral terrain”, then the-
shortest path can be computed exactly(in®logn) time ~ B. Paper Outline

[8]. This paper is organized as follows. In Section Il, we
The firste-approximation algorithm for the 3D Euclidean introduce the notion 0fH\:paths and specify the relationship
shortest path problem is given by Papadimitriou [9] with between this kind of paths and the shortest paths above
running timeO(n*e~2(N + log 2)?), wheren is the total  a polyhedral terrain. In Section Ill we give an algorithm

number of vertices of the polyhedral obstacles, a¥idis that finds a crude approximation to the shortést\fpaths.
the maximum bit-length of the input integers. A different Using this algorithm and a pseudo approximation technique
approach was taken by Clarkson [3] resulting in an algo-proposed by Asano et al. [1], we give our main algorithm
rithm which is faster wheme? is large. Asano et al. [1] in Section IV to approximate the shortest path above a
have slightly improved the running time of Papadimitriou’s polyhedral terrain. We conclude in Section V with an open
algorithm toO(n*c~2log N). question.

A. Contribution of This Paper Il. PRELIMINARIES AND PROPERTIES

In this paper, we consider the 3D shortest path problem in For eactp > 1, the L,,-distance between two pointsand
the presence of a polyhedral terrain (i.e. a polyhedral surfacé in 3D space is defined d$x(a) — x(b)|P + |y(a) —y(b)|P +
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Fig. 1. A polyhedral terraiff” and a planew(h) intersecting it.w(h) is

partitioned byT into a free region,F(h), and an obstacle region, shown in
gray. The shortest path(h) betweens(h) andt(h) in the free region of
w(h) is shown by dashed lines.

|z(a) — 2(b)|?)}/P. Special cases of thk, metric include the
L, metric (Manhattan metric) and thie, metric (Euclidean
metric). TheL,-length of a polygonal path is the sum of the
L,-lengths of each segment of the path. Thelength of a
pathr is denoted by|x||,,. Throughout this paper, we assume
thatp is fixed. Therefore, we may supprass our notations.
For example, we simply writéir|| instead of||x||,.

Let T be a polyhedral terrain with vertices, and lets
andt be two points on or abové&. We assume without loss
of generality thatz(s) = 0 and z(t) > 0. Let 7, be the
L,-shortest path betweenandt that fully stays on or above
T. We note thatr, is not necessarily unique.

Consider the plane(h) : z = h. The intersection of’ and
w(h) partitionsw(h) into a free regionF (h), and an obstacle
region,w(h) \ F(h), as shown in Fig. 1.X(h) consists of
those points onw(h) that lie on or abovel"). We denote by
s(h) and t(h) the vertical projection ofs and ¢ on w(h),
respectively. Letr(h) be theL,-shortest path fron(h) to
t(h) that lies completely inF(h).

For h > z(t), we construct a path from to ¢ aboveT
as follows: we first move froms along a vertical segment
to s(h), then proceed froms(h) to t(h) along the planar
path 7(h), and finally descend froni(h) along a vertical
segment ta. We call such a vertical-horizontal-vertical path
a VH\tpath with heighth and denote it byr(k). Among all
VH\tpaths abovel’, we refer to the one with the minimum
L,-length as theoptimal VH\tpath abovel” and denote it by
m*. We note again that* is not necessarily unique.

Mitchell and Sharir [8] have observed thatiin metric, the
optimal VH\¢path and thd.,-shortest path above a polyhedral
terrain have the samg;-length. We can generalize this fact
to any L, metric as follows:

Observation 1:Let 7* be the optimaVMH\tpath, andr,p:

be the L,-shortest path above a polyhedral terrain. Then

Il < 2075 [[mope -

Proof: Suppose thatr,,; is composed of segments
s; = (a;,b;). We usez;, y; and z; to refer to the length of
the projection ofs; in the z-, y- andz-direction, respectively.
Let ¢; be the vertical projection of; on a horizontal plane
passing through;, and definer; = (b;, ¢;) andh; = (a;, ¢;)
(see Fig. 2).

Fig. 2. The projection of segment = (a;,b;) on a horizontal plane
passing through;.

Then
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Let h be the maximum-coordinate of a point of. It is
clear that|7*|| < ||=(h)||. The pathr,,; can be decomposed
into two (possibly empty)-monotone subpaths™ and =,
wheren™ is ascending and~ is descending in-direction.
Therefore,) ", ||h;|| = 2h — z(t). Furthermore, the vertical
projections ofo;’s on w(h) form a path froms(h) to ¢(h)
that completely lies in the free region af(h). Therefore,
>, lloi]l > 7(h). Putting all together, we have
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which implies that|w*[| < 20~ | mopll- O

By Observation 1, any algorithm that computes an
approximation to the optimaV/H\tpath above a polyhedral
terrain 7', provides a factof2(»~1/? 1 ¢) approximation to
the L,,-shortest path abovE in any L,, metric. The following
observation will be a main ingredient of ogHapproximation
algorithm in Section IV.

Observation 2:Let h > A’ > 0. If h — k' < A/2 then
(Al < [lm(A)]| + A.

Proof: Let L(h) = ||7(h)||. The free region ofw(h),
F(h), expands a4 increases. Thereforé,(h) is a decreasing
function of h. It means that forh > '/, L(h) — L(k') < 0.
Using the fact that|=(h)|| = L(h) + 2h — 2(t) we get

[l ()| = I (A

L(h) — L(h') + 2(h — ')

< 2(h—n) < A. O

IIl. FINDING A CRUDE APPROXIMATION

In this section, we show how to efficiently find a crude ap-
proximation to the optimaV/H\tpath,7*, above a polyhedral
terrain. More precisely, we find a real value that approximates



the length of7* to within a multiplicative-factor ofO(n). IV. THE e-APPROXIMATION ALGORITHM

This crude approximation will be then used in the next section
to obtain anc-approximation tor*. Let IT be the set of alVH\tpaths betweers and ¢ that

fully stay on or abovel'. For R > 0, we denote bylIr the
set of those paths ifil that lie completely in the half-space
z < R. In other words Il is the set of thos&/H\tpaths

Lemma 1:Given a valuer > 0, we can check imO(n) whose heights are restricted to be at mastLet 7}, be the
time whetherC,(r) contains a path frony to ¢ that fully L,-shortest path ilz. For R < R/, we havellr C IIz C
stays on or abové'. I1. Therefore,

Proof: Let S be the top face of’;(r). To see ifC4(r)
contains a valid path frony to ¢, we just need to check
if there is a path connecting(r) to ¢(r) in S\ 7. The  wherer* is the optimal path il. Furthermore, the following
intersection ofl” and the planev(r) forms a set of obstacles property holds true:

O ={04,0,,...}, where each obstacle is a simple polygon

(we discard holes inside the obstacles)Tlfis stored in a 7| <R = |7gl = [l="[.

proper data structures like a Doubly-Connected Edge Lis
[10], we can obtain every); as a sorted list of its edges
in total linear time. For each obstaole;, we then compute
simple polygons resulted frofi\ O;, and use standard point
location methods to check () andt¢(r) lie in the same

Forr > 0, let Cs(r) be a cube of side length- centered
at s. We first prove the following simple lemma.

7zl = ll7r | = "]

tAccording to this property, there is a direct correlation
between the search radius parameferand the length of
the optimal path inllz. It enables us to use a pseudo
approximation framework proposed by Asano et el. [1].

polygon. This can be done in time linear to the size(yf For e > 0, a pseudo approximation algorithrfor our
[10]. Thus, performing the check on all obstacles can be dondroblem computes a path(e, ) € Il such that
in O(n) overall time. O

. [w(e, R)I| < 7Rl +eR.
The next lemma, shows how we can find a valuéhat

approximates the length of the optimdH\¢path aboveT'. We call 7(e, R) a pseudoc-approximation to 7. The
following lemma provides an efficient pseudo approximation

Lemma 2:Let 7* be the optimalVH\tpath abovel. We algorithm for our problem.

can find a valuer such thatr < ||7*|| < 8nr in O(nlogn)
time andO(n) space. Lemma 3:For R > 0 ande > 0, there is a pseudo

approximation algorithm that computes a patla, R) € Ig
such that||7 (e, R)|| < ||7%|| + R in O(Z logn) time and
O(nlogn) space.

Proof: Let r* be the smallest value for whicfs(r*)
contains a valid path fromto ¢ aboveT'. Clearly,r* < ||7*||.
If S is the top face of”;(r*), then there is a path from(r*)

to t(r*) in S\ T that consists ofc segments of length at Proof: The algorithm is straightforward: For ea¢h<
most 4r. It is easy to observe thdt < n — 1. Therefore, ¢ < [2/¢], we computer(h;) at heightsh; = i x eR/2,
[7(r*)|| < 4(n—1)r*, and hencelr*| < ||z (r*)|| < 4(n — and then, select the path with the minimum-length among
D)r* 4 2r* < dnr*. the computed paths as(e, R). Let h* be the maximum:-
coordinate of a point on},, i.e. |7} || = ||=(h*)|. Clearly,

Now we show how to find a 2-approximation of in
O(nlogn) time. Let N be the maximum bit-length of the
integers in the input coordinates. Then it is clear that<
2V, Furthermore, we know that the shortest distance betwee
any pair of points in this setting &3V (This is the distance ~ For the complexity, we recall that computing eacfh;)
between two parallel planes specified with integer coefficientdS equivalent to constructing a planak,-shortest path
of bit length at mostV, and thus & x 3 determinant of such ~ #(hi), which can be accomplished i@(nlogn) time and
integers [9]). O(nlogn) space [6]. (Indeed, we need just linear space
in L;-metric [5]). Computing[2/e] such paths requires
O(%2logn) total time. O

h* falls in an intervallh,_1, hy] for somel < k < [2/e].
Sinceh,—h* < eR/2, Observation 2 implies thdtr (hy)| <
Mw(h*)” +¢eR and hencd|n (e, R)|| < ||7g| + eR.

For every integeti, we definer; = 23N=1, |t is clear
thatr, < r* <ry, for somet € [0,4N]. We use the idea of . _
binary search to find using at most(log N) queries of the We call & alow valuein case|r (s, R)|| > R, and ahigh
form “if C,(r;) contains a valid path from to ¢”. According value otherwise. Asano et al. have proved the following nice
to Lemma 1, this require®(nlog N) = O(nlogn) overall ~ Property.
time. By settingr = r,, we simply haver < r* < 2r, and Lemma 4:[1] For a > 0, if R; is a low value andRy,
hencer < |=*|| < 8nr. O is a high value s.tR, < aR;, then|x(s, Ry)| < (1 +

arss) |l
1—¢



By assumingo 2 and e < 1/2, we always have
ae/(1 —¢) < 4e. Using Lemma 4, one can therefore obtain
a (1 + 4e)-approximation tor*, for anye < 1/2, by simply
finding a low value R; and a high valueR; such that
Ry, < 2Ry. The following algorithm uses this fact to compute
an e-approximatevVH\tpath.

Algorithm 1 FIND e-APPROXIMATE VH\APATH

Find anr such thatr < ||7*|| < 8nr
Define R; = r2¢, forall i > 0
l—0, h<[logyn]+4
while h — 1 > 1 do
m — [(1+h)/2]
if R <||7(g, Rm)|
then I+~ m
else h+—m
Returnw (e, Rp,)

Theorem 1:Algorithm 1 computes are-approximation
to the optimal VH\Vpath above a polyhedral terrain in
O(Z lognloglogn) time andO(nlogn) space.

Proof: The correctness of the algorithm easily follows
from the following loop invariantAt the beginning of each
iteration, R; is a low value andR; is a high value.Note
that before the first iteration®?;, = » < ||7*| < |7 (e, R)||
and Ry, > 16nr, thus [[w(e, Rp)|| < |[7p, [l + eRn
|7*|| + eRn < iR, + 3R, = Ry. Upon termination of
the loop, we haveR;, = 2R,;. Therefore, by Lemma 4 the
output is a(l + 4e)-factor approximation tor* for any
€ < 1/2, and hence, the algorithm can be viewed és-8:)-
approximation algorithm for ang < ¢’ < 1/8.

In each iteration of the loop, we need just one call to the
pseudo approximation algorithm to verify wheth®y, is a
low value. The total number of calls to the pseudo approxi-
mation algorithm is thu®(loglogn). It immediately follows
from Lemma 3 that the running time of our algorithm is
O(%Z lognloglogn) and its space complexity i©(nlogn).

U

By Observation 1, any-approximation to the optimal
VHV\tpath immediately gives a fact¢2»~1)/? 4 ¢) approx-
imation to the L,-shortest path abovd'. Theorem 1 is
therefore equivalent to the following:

Theorem 2:For anyp > 1, the L,-shortest path above a
polyhedral terrain can be approximated to within a factor of
2(r=1)/P 4 ¢ using O(%Z lognloglogn) time andO(nlogn)
space.

Corollary 1: For any fixedp > 1, a 2-approximation to the

L,-shortest path above a polyhedral terrain can be obtaine
in O(nlognloglogn) time andO(nlogn) space.

Proof: It directly follows from Theorem 2 by picking
e = 1/p and observing that/p < 2(1 —27'/?) for all

p=>1

V. CONCLUSIONS

In the real world, aircrafts flying over a terrain usually
follow a simple pattern: they first fly upwards to a certain
height, then travel along a horizontal plane at that height to
a point above the target, and finally descend to the target.
In this paper, we showed how to efficiently approximate
the optimal such vertical-horizontal-vertical path to within
a multiplicative factor ofl + . This led to a simple and
efficient algorithm for approximating thé,-shortest paths
above a polyhedral terrain to within a factor 8P—1)/? 4 ¢.

The running time of our algorithm i©(% log n log log n) and
its space complexity i®(nlogn).

While there are several algorithms to approximate the
Euclidean shortest path among a set of polyhedral obstacles,
none of these algorithms is specialized for the case where
the obstacle is a single polyhedral terrain. An interesting
question is thus whether we can exploit properties of the
polyhedral terrains to obtain more efficiettapproximation
algorithms for this especial case of 3D shortest path problem.
The algorithm presented in Section IV gives a positive answer
to this question inL,; metric. For otherL, metrics { > 2)
the question remains open.
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