
ICCG 2019, Tehran, February 19, 2019

On the Maximum Triangle Problem

Afrouz Jabalameli∗ Hamid Zarrabi-Zadeh†

Abstract

Given a set P of n points in the plane, the maximum
triangle problem asks for finding a triangle with three
vertices on P enclosing a maximum number of points
of P . While the problem is easily solvable in O(n3)
time, it has been open whether a subcubic solution is
possible. In this paper, we show that the problem can
be solved in o(n3) time, settling this open problem. We
also improve the runtime of some of the previous ap-
proximation algorithms available for the problem.

1 Introduction

Let P be a set of n points in the plane. In the maximum
triangle problem, the objective is to find a triangle with
three vertices on P , so that the number of points of P
enclosed by the triangle is maximum (see Figure 1 for an
illustration). Eppstein et al. [4] showed that the prob-
lem can be solved in O(n3) time. They indeed solved
a more general problem of finding a convex k-gon en-
closing a maximum (or minimum) number of points in
O(kn3) time. They left this question open whether the
problem can be solved faster.

Doüıeb et al. [3] revisited the maximum triangle prob-
lem, and presented several subcubic approximation al-
gorithms for it. They again posed finding an o(n3)-time
exact algorithm as an open problem.

In this paper, we settle this open problem in affirma-
tive by showing that an o(n3)-time exact algorithm is in-
deed possible, using a reduction to the min-plus matrix
multiplication, for which slightly subcubic algorithms
are already known [1, 2, 5, 6]. The min-plus matrix mul-
tiplication (also known as distance product) has recently
attracted considerable attention due to its connection to
several fundamental problems such as all-pairs shortest
paths, minimum cycles, replacement paths, metricity,
etc. [7]. The current best time complexity for comput-

ing the min-plus product is n3/2Ω(
√
logn) [2, 6].

We also consider approximation algorithms for the
maximum triangle problem, and improve the runtime
of several algorithms proposed by Doüıeb et al. [3] for
the problem. Table 1 shows a summary of our results.
In this table, h denotes the size of the convex hull of P .

∗IDSIA Institute, University of Lugano, afrouz@idsia.ch.
†Department of Computer Engineering, Sharif University of

Technology, zarrabi@sharif.edu.

Figure 1: An example of a maximum triangle.

Runtime

Algorithm Previous New

Exact O(n3) n3/2Ω(
√
logn)

3-approx O(nh2 log n) O(nh log n+ nh2)

4-approx O(nh2 log h) O(nh log h+ h3)

4-approx O(n log2 n) O(n log n log h)

Table 1: Summary of the results.

2 Preliminaries

Let P be a set of n points in the plane. Throughout
this paper, we assume that the points are in general
position, i.e., no three points are co-linear, and no two
points have the same x-coordinates.

Given three points p, q, r ∈ P , we call △pqr a triangle
in P , and denote by |△pqr| the number of points of
P enclosed by △pqr. A triangle △pqr with maximum
|△pqr| is called a maximum triangle of P , or in short,
an optimal triangle.

3 A Subcubic Exact Algorithm

In this section, we show how the maximum triangle
problem can be solved in o(n3) time, using matrix mul-
tiplication over the (min,+)-semiring, for which slightly
subcubic algorithms are available. Recall that the min-
plus product of two n× n matrices A and B is defined
as

(A⊕B)i,j = min
1≤k≤n

{Ai,k +Bk,j} .

Theorem 1 Let P be a set of n points in the plane. A
maximum triangle of P can be found in O(T (n)) time,
where T (n) is the time needed for computing the min-
sum product of two n× n matrices, the best current al-
gorithm for which has n3/2Ω(

√
logn) runtime.

2nd Iranian Conference on Computational Geometry

p

q

r

Figure 2: Points inside the triangle △pqr.

Proof. For each pair of points p, q ∈ P , we denote by
npq the number of points of P in the vertical slab be-
low the line segment pq. The value of npq for all pairs
p, q ∈ P can be computed in O(n2) time [4]. For any
two points p, q ∈ P , we set n−→pq = npq if the vector −→pq
is directed from left to right, and set n−→pq = −npq other-
wise.

Now, for any three points p, q, r ∈ P in clockwise
order, the number of points in the triangle △pqr can be
written as:

|△pqr| = n−→pq + n−→qr + n−→rp

(see Figure 2 for an illustration). For points in counter-
clockwise order, we have |△pqr| = −(n−→pq + n−→qr + n−→rp).
Let A be a n × n matrix with Ap,q = n−→pq, and let

B = A ⊕ (A ⊕ A). By the definition of the min-plus
product, we have

Bp,p = min
q,r∈P

{Ap,q +Aq,r +Ar,p} ,

for all p ∈ P . Therefore, to obtain a maximum triangle,
we just need to check the n values on the main diag-
onal of the matrix B for the smallest (negative) num-
ber, whose absolute value corresponds to the number
of points in a maximum triangle. The optimal triangle
itself can be easily found in O(n2) time by enumerating
all O(n2) triangles with one vertex on the point realizing
the smallest value in the diagonal. The whole runtime
of the algorithm is therefore bounded by that of com-
puting the min-plus product. □

4 Improved Approximation Algorithms

Doüıeb et al. [3] proposed several subcubic approxima-
tion algorithms for the maximum triangle problem. The
main idea behind their algorithms is to reduce the num-
ber of triangles enumerated by fixing 1, 2, or 3 vertices
of the optimal triangle on the convex hull of the points.
They also used this observation that if the surface of an
optimal triangle is covered by c triangles (for a constant
c ≥ 1), then one of these triangles is a c-approximation
of the optimal triangle.

In this section, we improve the runtime of the approx-
imation algorithms proposed by Doüıeb et al. [3], using
faster methods for counting the number of points in the
enumerated triangles.

p

s

q

r

Figure 3: Triangles formed by four points on convex
hull.

In the remaining of this section, we assume that P is
a set of n points in the plane, H is the convex hull of
P , and h = |H|. We will use the following two auxiliary
results from Doüıeb et al. [3].

Lemma 2 ([3]) Among all triangles in P with k ver-
tices on the convex hull (1 ≤ k ≤ 3), there exists a
triangle that (k + 1)-approximates an optimal triangle.

Lemma 3 ([3]) Given two points p, q ∈ H, the value of
|△pqr| for all r ∈ P can be computed in O(n log n) time.
Furthermore, |△pqr| for all r ∈ H can be computed in
O(n log h) time.

The following is a direct corollary of Lemma 3.

Lemma 4 Given a point p ∈ H, the value of |△pqr|
for all q, r ∈ H can be computed in O(nh log h) time.
Furthermore, |△pqr| for all q ∈ P and r ∈ H can be
computed in O(nh log n) time.

Proof. Fix a point q on H. By Lemma 3, |△pqr| for all
r ∈ H can be computed in O(n log h) time. Since there
are h − 1 option for choosing q, computing |△pqr| for
all q, r ∈ H takes O(nh log h) time in total. Similarly,
if we fix q ∈ P , the algorithm takes O(nh log n) time by
Lemma 3. □

Now, we prove two lemmas which are the main ingredi-
ents of our improved algorithms.

Lemma 5 The value of |△pqr| for all p, q, r ∈ H can
be computed in O(nh log h+ h3) time.

Proof. Let p, q, r, s be four points on H in clockwise
order. The value of |△pqr| can be written as |△spq| +
|△sqr| − |△spr| (see Figure 3). By Lemma 4 we can
compute the number of points enclosed by all triangles
on H whose one vertex is fixed on s in O(nh log n) time.
Therefore, after this preprocess step, we can compute
the value of |△pqr| for each p, q, r ∈ H in O(1) time.
Since there are O(h3) such triangles, the whole process
takes O(nh log h+ h3) time in total. □

ICCG 2019, Tehran, February 19, 2019

Lemma 6 For all p, q ∈ H and r ∈ P , the value of
|△pqr| can be computed in O(nh log n+nh2) total time.

Proof. For a fixed point s on H, we compute the num-
ber of points enclosed by all triangles with one ver-
tex on s, and the other two vertices freely chosen one
from P and the other from H in O(nh log n) time using
Lemma 4. Now, for any triangle △pqr with p, q ∈ H
and r ∈ P , we compute |△pqr| as follows.

(i) If r lies inside △pqs, then |△pqr| = |△pqs| −
|△prs| − |△qrs|.

(ii) If rp crosses sq, then |△pqr| = |△pqs| + |△qrs| −
|△prs|.

(iii) If rq crosses sp, then |△pqr| = |△pqs| + |△prs| −
|△qrs|.

(iv) If rs crosses pq, then |△pqr| = |△prs| + |△qrs| −
|△pqs|.

In any of the above cases, |△pqr| can be computed in
O(1) time. Since there are O(nh2) different triangles
△pqr with p, q ∈ H and r ∈ P , we can compute |△pqr|
for all such triangles in O(nh log n+nh2) total time. □

Now, Lemmas 5 and 6 together with Lemma 2 yield the
following theorem.

Theorem 7 A 3-approximation of an optimal triangle
can be found in O(nh log n + nh2) time. Furthermore,
a 4-approximation of an optimal triangle can be found
in O(nh log h+ h3) time.

Remark. Eppstein et al. [4] proved that P can
be preprocessed in O(n2) time, so that for any
query triangle △pqr in P , |△pqr| can be reported
in O(1) time. Using this as an alternative way for
counting the number of points in the enumerated
triangles, we can rewrite the time bounds in Theo-
rem 1 as O(min(n2 + nh2, nh log n + nh2)) for the
3-approximation, and O(min(n2 + h3, nh log h + h3))
for the 4-approximation algorithm.

In the following theorem, we present an alternative 4-
approximation algorithm for the problem.

Theorem 8 A 4-approximation of an optimal triangle
can be found in O(n log n log h) time.

Proof. Let t1, t2, . . . , th be the vertices of H in clock-
wise order, and let m = ⌊h/2⌋ + 1. We partition
H into two convex polygons H1 = t1, t2, . . . , tm and
H2 = tm, . . . , th, t1. Let P1 and P2 be the points of P
enclosed by H1 and H2, respectively. We use Lemma 3
to compute |△t1tmp| for all p ∈ P in O(n log n) time.
We then recurse on P1 and P2, and return a triangle
found containing a maximum number of points.

To prove correctness, we first recall that there exists
a triangle △t1pq with p, q ∈ P that 2-approximates an
optimal triangle [3]. If t1tm crosses pq, then the two
triangles △t1tmp and △t1tmq cover △t1pq, and hence,
one of them is a 2-approximation of △t1pq, which is in
turn, a 4-approximation of an optimal triangle. On the
other hand, if pq lies in one side of t1tm, the recursive
call on that side returns a 2-approximation.
Let T (n, h) be the time required by the algorithm on

a point set of size n whose convex hull has size h. Then,
T (n, h) = T (n1, h1)+T (n2, h2)+O(n log n), where n1+
n2 = n + 2, h1 = ⌊h/2⌋ + 1, and h2 = ⌈h/2⌉ + 1. The
recurrence tree for this relation has height O(log h), and
yields T (n, h) = O(n log n log h). □

5 Conclusions

In this paper, we presented a slightly subcubic algorithm
for the maximum triangle problem, and improved the
runtime of several approximation algorithms available
for the problem. A main question that remains open is
whether a truly subcubic algorithm with O(n3−ε) time
is possible for the problem. It is also interesting to study
the generalized maximum k-gon problem, for k ≥ 4.

Acknowledgments The authors would like to thank
Mohammad-Reza Maleki, Hamed Valizadeh, and
Hamed Saleh for their helpful discussions during the
early stages of this work.

References

[1] T. M. Chan. More algorithms for all-pairs shortest paths
in weighted graphs. SIAM J. Comput., 39(5):2075–2089,
2010.

[2] T. M. Chan and R. Williams. Deterministic APSP,
orthogonal vectors, and more: Quickly derandomizing
Razborov-Smolensky. In Proc. 27th ACM-SIAM Sym-
pos. Discrete Algorithms, pages 1246–1255, 2016.

[3] K. Doüıeb, M. Eastman, A. Maheshwari, and M. Smid.
Approximation algorithms for a triangle enclosure prob-
lem. In Proc. 23rd Canad. Conf. Computat. Geom.,
pages 105–110, 2011.

[4] D. Eppstein, M. Overmars, G. Rote, and G. Woeginger.
Finding minimum area k-gons. Discrete Comput. Geom.,
7(1):45–58, 1992.

[5] M. L. Fredman. New bounds on the complexity of the
shortest path problem. SIAM J. Comput., 5(1):83–89,
1976.

[6] R. Williams. Faster all-pairs shortest paths via circuit
complexity. In Proc. 46th Annu. ACM Sympos. Theory
Comput., pages 664–673, 2014.

[7] V. V. Williams and R. Williams. Subcubic equivalences
between path, matrix, and triangle problems. J. ACM,
65(5):27, 2018.

