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Routing in Well-Separated Pair Decomposition Spanners
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Abstract

In this paper, we present a local routing scheme for
the well-separated pair decomposition (WSPD) span-
ners. Given a point set P in the plane, a WSPD span-
ner is a geometric graph whose vertex set is P , and
for each pair (A,B) in the well-separated pair decom-
position of P , an edge is added to the graph from an
arbitrary point a ∈ A to an arbitrary point b ∈ B. It is
well-known that such a graph is a (1+ ε)-spanner of P ,
where ε > 0 is an input parameter used for construct-
ing the well-separated pair decomposition. Our routing
scheme assigns to each point p ∈ P a routing table of
size O( 1

ε2 logα), where α is the ratio of the furthest dis-
tance to the closest distance in P . It can then locally
route a message from any arbitrary point p to any point
q in P along a path whose length is at most 1+ ε times
the Euclidean distance between the pair of points. The
WSPD construction considered in this paper is based
on compressed quadtrees. To the best of our knowl-
edge, this is the first time that a local routing scheme
with an optimal competitive routing ratio is considered
for this famous class of WSPD spanners.

1 Introduction

A geometric graph G is a t-spanner for a point set P ,
if for each pair of points p and q in P , there is a path
in G between p and q, whose length is at most t times
the Euclidean distance between p and q. The minimum
t such that G is a t-spanner of P is called the spanning
ratio of G.
One of the most important problems in communica-

tion networks is to send/route a message from a source
point to any other target point in such a way that the
total distance traveled by the message is at most a con-
stant times the shortest path or Euclidean distance be-
tween the two points. Network routing strategies such
as Dijkstra’s algorithm [10] require knowledge of the
whole network topology in order to compute a short
route. In many settings, this assumption is impractical,
and the routing algorithm is supposed to work without
knowing the full structure of the graph. Therefore, a
local routing strategy is usually preferred, meaning that
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the algorithm can route the message to the target us-
ing only information stored in the message itself and in
the current node [15]. If the information stored in the
current node is of size k, we say that the local routing
algorithm has a routing table of size k. Moreover, a lo-
cal routing algorithm A is called µ-memory if it uses a
memory of size µ stored with the message [4]. The algo-
rithm A is c-competitive if the total distance traveled by
the message is not more than c times the Euclidean dis-
tance between source and destination. The minimum
c such that a routing algorithm A is c-competitive is
called the routing ratio.

Related Work. Recently, a stream of research has ex-
plored local routing algorithms for some geometric span-
ners such as Delaunay triangulations and θ-graphs (for
definitions, see [5, 9]). Chew [9] was the first to de-
scribe a local routing algorithm on the L1-Delaunay tri-
angulation with a routing ratio of

√
10, using only the

information of the target point, the current point, and
all neighborhood of the current point. Subsequently,
local routing algorithms using the same set of informa-
tion were presented for TD-Delaunay triangulation by a
spanning ratio of 5/

√
3 [3], and for the standard Delau-

nay triangulation by a spanning ratio of 5.90 [1]. In [5],
a θ-routing algorithm is described which has a constant
routing ratio on all θk-graphs with k ≥ 7. Moreover, a
deterministic local routing scheme with a routing ratio
of 2 is presented for θ6-graph in [3].

Very recently, Bose et al. [2] considered a specific type
of WSPD spanners, and presented two near-optimal lo-
cal routing schemes for this type of spanners. In their
settings, the WSPD construction is based on fair split
trees, and the WSPD spanner is constructed by select-
ing a well-chosen edge from each partition of WSPD
(the rightmost point in each set) as its representative,
rather than picking an arbitrary edge. They showed
that their WSPD spanner has an improved spanning
ratio of 1+4/s+4/(s−2) compared to the original one,
which was 1 + 8/(s − 4), where s > 0 is the separation
factor. They presented a 2-local and a 1-local routing
algorithm with routing ratios of 1+ 4/s+6/(s− 2) and
1+ 6/(s− 2) + 6/s+4/(s2 − 2s) + 8/s2, respectively (a
routing algorithm on a graph G is called k-local, if each
vertex v of G stores information about vertices that are
at hop distance at most k from v). Their routing scheme
did not use a header but required routing tables of total
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size O(s2nB) bits, where B is the maximum number of
bits to store a bounding box.

Competitive local routing algorithms with additional
memory have been recently considered for unit disk
graphs as popular wireless ad-hoc networks [15, 17]. The
unit disk graph connects any two nodes which are within
unit distance to each other. Yan et al. [17] presented a
routing algorithm with low hop (edge) delay, by assign-
ing a label of size O(log2 n) to each node, where n is
the number of nodes. Subsequently, Kaplan et al. [15]
discovered a (1 + ε)-competitive routing algorithm for
unit disk graphs, using a modifiable header (memory)
of size O(log n log∆), where ∆ is the diameter of the
points, as well as additional polylog bits for each point.
Their method is based on the well-separated pair de-
composition for unit disk graphs [12].

Our Contribution. In this paper, we focus on an
important and well-known class of WSPD spanners
whose underlying WSPD is constructed using com-
pressed quadtree. This construction of WSPD is widely
used in the literature [8, 11, 14, 16], as it avoids the
complexity of fair split trees originally used by Callahan
and Kosaraju [7]. We present a competitive O(logα)-
memory routing algorithm to route on these WSPD
spanners, where α is the ratio of the farthest distance
to the closest distance in the input point set. We in-
deed consider a standard WSPD spanner which is con-
structed by choosing an arbitrary edge from each pair
of the WSPD, and unlike the method used in [2], we do
not pose any restriction on choosing the representatives
of the pairs when constructing the WSPD spanner. As-
suming that we can store a static information (routing
table) of size O( 1

ε2 logα) at each node of the spanner,
the proposed algorithm is a (1 + ε)-competitive local
routing algorithm, which is optimal.

2 Preliminaries

In this section, we briefly describe the notions used
throughout the paper.

Well-Separated Pair Decomposition. Let P be a set
of n points in the plane, and s > 0 be a real number.
Two point sets A,B ⊆ P are well-separated with respect
to a separation factor s, if there are two disjoint disks
DA and DB with the same radius r, enclosing A and B
respectively, such that the distance betweenDA andDB

is at least s · r. Here, the distance of two subsets A and
B is defined as d(A,B) = min{∥a − b∥ | a ∈ A, b ∈ B}
where ∥a − b∥ denotes the Euclidean distance of the
points a and b (see Figure 1).

Following the definition in [7], a well-separated pair
decomposition (WSPD) for P with respect to s is a col-
lection W = {(A1, B1), . . . , (Am, Bm)} of pairs of non-

r

r

≥ s · r

DA

DB

Figure 1: A well-separated pair with separation s

empty subsets of P such that each pair (Ai, Bi) for
1 ≤ i ≤ m is a well-separated pair with respect to s,
and for any pair of points p, q ∈ P , there is a unique
pair (Ai, Bi) in the collection, such that either p ∈ Ai

and q ∈ Bi, or q ∈ Ai and p ∈ Bi. The number of
well-separated pairs, m, is called the size of the WSPD.

WSPD Construction. A quadtree of P is a tree data
structure T in which each internal node has four chil-
dren, and the points of P are stored in the leaves. The
root of T corresponds to a square bounding box of P ,
and each internal node v ∈ T corresponds to a cell c(v)
which is a square formed by splitting the parent cell
into four equal-size squares by a horizontal and a verti-
cal cut. A compressed quadtree is a quadtree in which
any sequence of nodes with degree one are replaced by a
single node. A compressed quadtree of a set of n points
can be constructed in O(n log n) time [13].

Given a compressed quadtree T of P , one can use
the following greedy algorithm to build a WSPD of P .
The algorithm starts by considering any combination of
two children of the root as a pair. If the current pair
is not well separated, then the bigger node of the pair
is replaced by its children, and the process continues
until we reach a well-separated pair decomposition. For
a separation factor s > 0, this algorithm yields a WSPD
of size O(s2n) in O(n log n+ s2n) time [13].

WSPD Spanners. Callahan and Kosaraju [6] showed
how a (1 + ε)-spanner can be obtained from a WSPD.
They first constructed a WSPD of P with separation
factor s = 4 + 8/ε. They then chose an arbitrary point
ai ∈ Ai and an arbitrary point bi ∈ Bi as the repre-
sentatives of Ai and Bi, respectively, and showed that
the resulting graph G = (P,E) with E = {(ai, bi) | 1 ≤
i ≤ m} is a (1 + ε)-spanner. We refer to the result-
ing graph G as a WSPD spanner of P throughout the
paper. Based on the construction described above, the
WSPD spanner has size O(n/ε2) and can be computed
in O(n log n+ n/ε2) time.
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3 Routing in WSPD Spanners

Let P be a set of n points in the plane, and let α be
the spread of P , namely the ratio of the farthest dis-
tance to the closest distance in P . In this section, we
propose an algorithm to route a message through the
WSPD spanner of P , utilizing a small additional mem-
ory (stack) along with the message, and a static data
(routing tables) in the nodes of the graph.

We first prove an upper bound on the number of
WSPD pairs that contain a fixed point. The following
packing lemma is an ingredient of our proof.

Lemma 1 (Packing Lemma [7]) Let D be a disk of
radius r in the plane. The number of disjoint quadtree
cells of side length at least ℓ overlapping D is at most
(1 + ⌈2r/ℓ⌉)2 = O(max {2, r/ℓ}2).

Lemma 2 For each point p ∈ P , the number of WSPD
pairs containing p is upper-bounded by O( 1

ε2 logα).

Proof. Let W be a WSPD of P with separation s as
described in Section 2. Let (A,B) be a well-separated
pair in W containing p, and let x and y be the small-
est quadtree cells of same length ℓ, enclosing A and B,
respectively. Suppose that x and y are in level i of
the quadtree. By the construction of WSPD, we know
that if (A,B) ∈ W, then (P (A), P (B)) is not in W,
where P (A) and P (B) denote the parents of A and B
in quadtree, respectively. Then, d(A,B) ≤ (s + 2)

√
2ℓ,

because otherwise, the distance between parent cells of
c(x) and c(y) with side length at least 2ℓ is more than
s
√
2ℓ, and hence they are well-separated, which is a con-

tradiction (see Figure 2). Therefore, by packing lemma,

at most O(((s+ 2)
√
2)

2
) = O(s2) pairs in level i can

contain p. Since s = 4 + 8/ε, and there are at most
logα levels in the quadtree, the total number of pairs
containing p is O( 1

ε2 logα). □

c(x)
A

B

p`

c(y)

≤ (s+ 2)
√
2`

Figure 2: A well-separated pair with bounded distance.

Routing Algorithm. We are now ready to describe our
routing algorithm. Let fp(q) denote a function that
searches for a pair (Ai, Bi) in the WSPD such that
(p, q) ∈ Ai × Bi or (p, q) ∈ Bi × Ai, and returns their
corresponding representatives (ai, bi) or (bi, ai) in the
WSPD spanner. This function must be computable at
node p. Therefore, at each node p, we store a list (table)
of pairs (Ai, Bi) such that p is a member of either Ai or
Bi, and for each such pair (Ai, Bi), we store in the table
the boundaries of Ai and Bi (to check membership of an
arbitrary point in the set), as well as the representatives
of Ai and Bi in the WSPD spanner. Note that Lemma
2 bounds the size of the table stored at each node to
O( 1

ε2 logα). The function is now simply computable at
p by trying all pairs including p and checking member-
ship of q in the other side of the pair, using boundaries
of the squares corresponding to the sets.

Routing can be performed by simulating the following
recursive algorithm, using a stack stored and transmit-
ted along with the message. The inputs are source and
destination points, (p, q), and we are at p at the begin-
ning of the algorithm (see Figure 3).

Algorithm 1 Route (p, q)

(a, b)← fp(q)
Route(p, a)
traverse along edge (a, b)
Route(b, q)

p

Ai

ai

(ai, bi)

δ(p, ai)

Bi

q

bi

δ(bi, q)

Figure 3: Routing a message from p to q.

Lemma 3 For any pair of points p, q ∈ P , the path
traversed by Algorithm 1 from p to q is at most 1 + ε
times the Euclidean distance between p and q.

Proof. We prove by induction on the Euclidean dis-
tance of the points. Fix a pair p, q ∈ P . Suppose by
induction that for any pair x, y ∈ P with d(x, y) ≤
d(p, q), the traversed path δ(x, y) has length at most
(1 + ε)d(x, y), where d(x, y) denotes the Euclidean dis-
tance between x and y. By construction of the WSPD
spanner, there is a pair (Ai, Bi) such that p ∈ Ai and
q ∈ Bi. Therefore, we have:
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δ(p, q) ≤ δ(p, ai) + d(ai, bi) + δ(bi, q)

≤ (1 + ε)d(p, ai) + [d(p, q) + 4r] + (1 + ε)d(bi, q)

≤ (1 + ε)4r + [d(p, q) + 4r]

≤ d(p, q) + (1/s)(8 + 4ε)

≤ (1 + ε)d(p, q)

□

Lemma 4 The maximum depth of recursion in Algo-
rithm 1, and thus the maximum size of the stack sent
along with the message, is O(logα).

Proof. This is easy to see by noting that elements
stored in the stack, corresponding to the recursion his-
tory for the current call, are monotonically deepening
in the quadtree. □

Putting all these together, we get our main theorem.

Theorem 5 Let P be a set of n points in the plane
with spread α, and let S be a WSPD spanner of P with
spanning ratio 1 + ε. We can locally route a message
between any two nodes of S using a memory of size
O(logα) stored with the message, and a routing table
of size O( 1

ε2 logα) stored at each node, such that the
path traversed between the two nodes has length at most
1 + ε times their Euclidean distance.

4 Conclusion

In this paper, we considered the WSPD spanners based
on compressed quadtrees, and proposed an efficient lo-
cal routing algorithm on these spanners, using a memory
of size O(logα) stored with the message, and a routing
table of size O( 1

ε2 logα) stored in the nodes of the span-
ner, where α is the spread of the underlying points. The
path traveled between any two points by the algorithm
is guaranteed to be no longer than 1 + ε times the Eu-
clidean distance between the two points. Although we
presented our routing algorithm in the plane, the algo-
rithm can be easily extended to any fixed dimension d,
at the expense of increasing the routing table size to
O( 1

εd
logα). It is interesting to see if the size of routing

table and/or memory can be improved.
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