
Improved Algorithms for Partial Curve
Matching?

Anil Maheshwari1, Jörg-Rüdiger Sack1, Kaveh Shahbaz1, and
Hamid Zarrabi-Zadeh1

School of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
Email: {anil,sack,kshahbaz,zarrabi}@scs.carleton.ca

Abstract. Back in 1995, Alt and Godau gave an efficient algorithm for
deciding whether a given curve resembles some part of a larger curve un-
der a fixed Fréchet distance, achieving a running time of O(nm log(nm)),
for n and m being the number of segments in the two curves, respectively.
We improve this long-standing result by presenting an algorithm that
solves this decision problem in O(nm) time. Our solution is based on
constructing a simple data structure which we call free-space map. Using
this data structure, we obtain improved algorithms for several variants
of the Fréchet distance problem, including the Fréchet distance between
two closed curves, and the so-called minimum/maximum walk problems.
We also improve the map matching algorithm of Alt et al. for the case
when the map is a directed acyclic graph.

1 Introduction

The Fréchet distance is a widely-used metric for measuring the similarity of
the curves. It finds applications in morphing [8], handwriting recognition [12],
protein structure alignment [9], etc. This measure is often illustrated as the
minimum-length leash needed for a person to walk a dog, while each of them is
traversing a pre-specified polygonal curve without backtracking.

Alt and Godau [3] showed how the Fréchet distance between two polygonal
curves with n and m vertices can be computed in O(nm log(nm)) time. For their
solution, they introduced a data structure, called free-space diagram. The free-
space diagram and its variants have been proved to be useful in other applications
involving the Fréchet distance (see e.g. [2, 4, 7]).

In their seminal work, Alt and Godau [3] also studied a partial curve matching
problem in which one wants to see if a given curve resembles some “part” of a
larger curve. Given two polygonal curves P and Q of size n and m, respectively,
they presented an algorithm that decides in O(nm log(nm)) time whether there
is a subcurve R of P whose Fréchet distance to Q is at most ε, for a given ε > 0.
Using parametric search, they solved the optimization problem of finding the
minimum such ε in O(nm log2(nm)) time .

? Research supported by NSERC, HPCVL, and SUN Microsystems.

Later, Alt et al. [2] proposed a generalization of the partial curve matching
problem to measure the similarity of a curve to some part of a graph. Given a
polygonal curve P and a graphG, they presented an O(nm logm)-time algorithm
to decide whether there is a path π in G whose Fréchet distance to P is at most
ε, where n is the size of P and m is the complexity of G. A variant of the partial
curve matching in the presence of outliers is studied by Buchin et al. [6], leading
to an algorithm with O(nm(n+m) log(nm)) running time.

Our results. In this paper, we present a simple data structure, which we call
free-space map, that enables us to solve several variants of the Fréchet distance
problem efficiently. The results we obtain using this data structure are sum-
marized below. In the following, n and m represent the size of the two given
polygonal curves P and Q, respectively, and ε > 0 is a fixed input parameter.

• Partial curve matching. Given two polygonal curves P and Q, we present
an algorithm to decide in O(nm) time whether there is a subcurve R ⊆ P
whose Fréchet distance to Q is at most ε. This improves the best previous
algorithm for this decision problem due to Alt and Godau [3], that requires
O(nm log(nm)) time. This also leads to an O(log(nm)) faster algorithm for
solving the optimization version of the problem, using parametric search.

• Closed Fréchet metric. Alt and Godau [3] showed that for two closed curves
P and Q, the decision problem of whether the closed Fréchet distance be-
tween P and Q is at most ε can be solved in O(nm log(nm)) time. We im-
prove this long-standing result by giving an algorithm that runs in O(nm)
time. As a result, we also improve by a log(nm)-factor the running time of
the optimization algorithm for computing the minimum such ε.

• Maximum walk. Given two curves P and Q and a fixed ε > 0, the maximum
walk problem asks for the maximum-length subcurve of Q whose Fréchet
distance to P is at most ε. We show that this optimization problem can be
solved efficiently in O(nm) time, without additional log(nm) factors. The
minimum walk problem is analogously defined, and can be solved by an
extension of the free-space map, as described in the appendix.

• Graph matching. Given a directed acyclic graph G, we present an algorithm
to decide in O(nm) time whether a curve P matches some part of G under a
Fréchet distance of ε, for n and m being the size of P and the complexity of
G, respectively. This improves the map matching algorithm of Alt et al. [2]
for the case of DAGs. Note that Alt et al.’s algorithm has a running time of
Θ(nm logm) in the worst case even if the input graph is a DAG or a simple
path.

The above improved results are obtained using a novel simple approach for
propagating the reachability information “sequentially” from bottom side to the
top side of the free-space diagram. Our approach is different from and simpler
than the divide-and-conquer approach used by Alt and Godau [3], and also,
the approach taken by Alt et al. [2] which is a mixture of line sweep, dynamic
programming, and Dijsktra’s algorithm.

The free-space map introduced in this paper encapsulates all the information
available in the standard free-space diagram, yet it is capable of answering a more
general type of queries efficiently. Namely, for any query point on the bottom
side of the free-space diagram, our data structure can efficiently report all points
on the top side of the diagram which are reachable from that query point. Given
that our data structure has the same size and construction time as the standard
free-space diagram, it can be viewed as a powerful alternative.

The current lower bound for deciding whether the Fréchet distance between
two polygonal curves with total n vertices is at most a given value ε, is Ω(n log(n))
[5]. However, no subquadratic algorithm is known for this decision problem, and
hence, one might conjecture that the problem may be 3SUM-hard (see [1]). If this
conjecture holds, then the results obtained in this paper do not only represent
improvements, but are also optimal.

The remainder of the paper is organized as follows. In Section 3, we define
the free-space map and show how it can be efficiently constructed. In Section 4,
we present some applications of the free-space map to problems such as partial
curve matching, maximum walk, and closed Fréchet metric. In Section 5, we
provide an improved algorithm for matching a curve in a DAG. We conclude in
Section 6 with some open problems.

2 Preliminaries

A polygonal curve in Rd is a continuous function P : [0, n] → Rd such that for
each i ∈ {1, . . . , n}, the restriction of P to the interval [i−1, i] is affine (i.e., forms
a line segment). The integer n is called the size of P . For each i ∈ {1, . . . , n},
we denote the line segment P |[i−1,i] by Pi.

A monotone reparametrization of [0, n] is a continuous non-decreasing func-
tion α : [0, 1] → [0, n] with α(0) = 0 and α(1) = n. Given two polygonal curves
P and Q of size n and m, respectively, the Fréchet distance between P and Q
is defined as

δF (P,Q) = inf
α,β

max
t∈[0,1]

‖P (α(t)), Q(β(t))‖,

where ‖·‖ denotes the Euclidean metric, and α and β range over all monotone
reparameterizations of [0, n] and [0,m], respectively. Given a parameter ε > 0,
the free space of the two curves P and Q is defined as

Fε(P,Q) = {(s, t) ∈ [0, n]× [0,m] | ‖P (s), Q(t)‖ 6 ε}.

We call points in Fε(P,Q) feasible. The partition of the rectangle [0, n] ×
[0,m] into regions formed by feasible and infeasible points is called the free-space
diagram of P and Q, denoted by FDε(P,Q) (see Figure 1.a). For 0 6 j 6 m, we
denote by FDj the one-dimensional free-space diagram FDε(P,Q)∩([0, n]×{j}),
corresponding to the curve P and the point Q(j). For each (i, j) ∈ {1 · · ·n} ×
{1 · · ·m}, the intersection of the free space diagram with the square [i − 1, i] ×
[j− 1, j] is called a cell of the diagram. Likewise, we call the intersection of FDj

with each interval [i− 1, i] a cell (or more precisely, the i-th cell) of FDj .

Q

P

(a) (b)

FDm

FD0

0 n

FDi

FDj

u′

v′

u

v

x

Fig. 1. (a) An example of a free-space diagram. (b) Proof of the crossing lemma.

For an interval I on the line, we denote by left(I) and right(I) the left and
the right endpoint of I, respectively. Given two points a and b in the plane, we
write a < b if ax < bx. The following simple lemma serves as a building block in
our algorithm.

Lemma 1. Given two sequences A and B of points on a line sorted from left to
right, we can preprocess the two sequences into a data structure of size O(|A|) in
O(|A|+ |B|) time, such that for any query point a ∈ A, the leftmost point b ∈ B
with a < b can be reported in O(1) time.

3 The Data Structure

Throughout this section, let P and Q be two polygonal curves of size n and m,
respectively, and ε > 0 be a fixed parameter. We call a curve feasible if it lies
completely within Fε(P,Q). We call the curve monotone if it is monotone in
both x- and y-coordinates. Alt and Godau [3] showed that δF (P,Q) 6 ε if and
only if there is a monotone feasible curve in Fε(P,Q) from (0, 0) to (n,m).

For 0 6 j 6 m, let Fj be the set of feasible points in FDj . Fj consists of
O(n) feasible intervals, where each feasible interval is a maximal continuous set
of feasible points, restricted to be within a cell.

Given two points u and v in the free space, we say that v is reachable from u,
denoted by u; v, if there is a monotone feasible curve in Fε(P,Q) from u to v.
Clearly, reachability is “transitive”: if u; v and v ; w, then u; w.

Lemma 2 (Crossing Lemma). Let u, u′ ∈ Fi and v, v′ ∈ Fj (i < j) such that
u 6 u′ and v′ 6 v. If u; v and u′ ; v′, then u; v′ and u′ ; v.

Proof. Let π be a monotone feasible curve that connects u to v. Since u′ and v′

are in different sides of π, any monotone curve that connects u′ to v′ in Fε(P,Q)
intersects π at some point x (see Figure 1.b). The concatenation of the subcurve
from u to x and the one from x to v′ gives a monotone feasible curve from u to
v′. Similarly, v is connected to u′ by a monotone feasible curve through x. ut

Let S be a set of points in Fε(P,Q). For 0 6 j 6 m, we define

Rj(S) := {v ∈ Fj | ∃u ∈ S s.t. u; v}.

For an interval I on Fi with i 6 j, we define the left pointer of I on Fj , denoted
by `j(I), to be the leftmost point in Rj(I). Similarly, the right pointer of I on
Fj , denoted by rj(I), is defined to be the rightmost point in Rj(I). If Rj(I) is
empty, both pointers `j(I) and rj(I) are set to null. Such pointers have been
previously used in [2, 3]. For a single point u, we use Rj(u), `j(u), and rj(u)
instead of Rj({u}), `j({u}), and rj({u}), respectively.

For 0 6 j 6 m, we define the reachable set R(j) := Rj(F0) to be the set of
all points in Fj reachable from F0. We call each interval of R(j), contained in
a feasible interval of Fj , a reachable interval. It is clear by our definition that
R(0) = F0.

Observation 1 For 0 6 i 6 j 6 m, we have R(j) = Rj(R(i)).

The following lemma describes an important property of reachable sets.

Lemma 3. For any two indices i, j (0 6 i 6 j 6 m) and any point u ∈ R(i),
Rj(u) = R(j) ∩ [`j(u), rj(u)].

Proof. Let S = [`j(u), rj(u)]. By Observation 1, R(j) = Rj(R(i)). Thus, it is
clear by the definition of pointers that Rj(u) ⊆ R(j) ∩ S. Therefore, it remains
to show that R(j)∩S ⊆ Rj(u). Suppose, by way of contradiction, that there is a
point v ∈ R(j)∩S such that v 6∈ Rj(u). Since v ∈ R(j), there exists some point
u′ ∈ R(i) such that u′ ; v. If u′ is to the left (resp., to the right) of u, then
the points u, u′, v, and `j(u) (resp., rj(u)) satisfy the conditions of Lemma 2.
Therefore, by Lemma 2, u; v, which implies that v ∈ Rj(u); a contradiction.

ut

Lemma 3 provides an efficient way for storing the reachable sets Rj(I), for all
feasible intervals I on F0: instead of storing each reachable set Rj(I) separately,
one set per feasible interval I, which takes up to Θ(n2) space, we only need to
store a single set R(j), along with the pointers `j(I) and rj(I) which takes only
O(n) space in total. The reachable set Rj(I), for each interval I on F0, can be
then obtained by R(j) ∩ [`j(I), rj(I)]. For each interval I on F0, we call the set
{`j(I), rj(I)} a compact representation of Rj(I).

Lemma 4. For 0 < j 6 m, if R(j − 1) is given, then R(j) can be computed in
O(n) time.

Proof. Let D be the restriction of the free space diagram to the rectangle [1, n]×
[j− 1, j]. Alt et al. [2] showed that for all feasible intervals I on the bottom side
of D (i.e., on Fj−1), the left and the right pointers of I on the top side of D (i.e.,
on Fj) can be computed using a series of linear scans in O(n) time. Let D′ be a
copy of D in which all points in Fj−1 \ R(j − 1) are marked infeasible. D′ can
be computed from D in O(n) time. By running the algorithm of [2] on D′, we

obtain all pointers `j(I) and rj(I), for all reachable intervals I on R(j − 1), in
O(n) total time. Now, we can produce Rj(R(j − 1)) easily by identifying those
(portions of) intervals on Fj that lie in at least one interval [`j(I), rj(I)]. Since
for all intervals I on R(j − 1) sorted from left to right, `j(I)’s and rj(I)’s are in
sorted order (this is an easy corollary of the Lemma 2), we can accomplish this
step by a linear scan over the left and right pointers in O(n) time. The proof is
complete, as R(j) = Rj(R(j − 1)) by Observation 1. ut

We now describe our main data structure, which we call free-space map. The
data structure maintains reachability information on each row of the free-space
diagram, using some additional pointers that help answering reachability queries
efficiently. The free-space map of two curves P and Q consists of the following:

(i) the reachable sets R(j), for 0 6 j 6 m,
(ii) the right pointer rj(I) for each reachable interval I on R(j− 1), 0 < j 6 m,
(iii) the next reachable point for each cell in FDj , for 0 < j 6 m, and
(iv) the previous take-off point for each cell in FDj , for 0 6 j < m,

where a take-off point on FDj is a reachable point in R(j) from which a point
on FDj+1 is reachable. For example, in Figure 2, `j is the next reachable point
of `′, and r′ is the previous take-off point of rj−1.

Theorem 1. Given two polygonal curves P and Q of sizes n and m, respectively,
we can build the free-space map of P and Q in O(nm) time.

Proof. We start from R(0) = F0, and construct each R(j) iteratively from R(j−
1), for j from 1 to m, using Lemma 4. The total time needed for this step is
O(nm). The construction of R(j), as seen in the proof of Lemma 4, involves
computing all right (and left) pointers, for all reachable intervals on R(j − 1).
Therefore, item (ii) of the data structure can be obtained at no additional cost.
Item (iii) is computed as follows. Let S be the set of all left pointers obtained
upon constructing R(j). For each cell c in FDj , the next reachable point of c, if
any, is a member of S. We can therefore compute item (iii) for each row FDj by
a linear scan over the cells and the set S using Lemma 1 in O(n) time. For each
row, item (iv) can be computed analogous to item (iii), but in a reverse order.
Namely, given the set R(j), we compute the set of points on FDj−1 reachable
from R(j) in the free-space diagram rotated by 180 degrees. Let S be the set of
all left pointers obtained in this reverse computation. For each cell c in FDj−1,
the previous take-off point of c, if there is any, is a member of S. We can therefore
compute item (iv) for each row by a linear scan over the cells and the set S using
Lemma 1 in O(n) time. The total time for constructing the free-space map is
therefore O(nm). ut

In the following, we show how the reachability queries can be efficiently an-
swered, using the free-space map. For the sake of describing the query algo-
rithm, we introduce two functions as follows. Given a point u ∈ FDj , we define
Leftmost-Reachable(u) to be the leftmost point on or after u on FDj . Anal-
ogously, we define Rightmost-Take-Off(u) to be the rightmost take-off point

Algorithm 1 Query(u), where u ∈ F0

1: let `0 = r0 = u

2: for j = 1 to m do

3: let `′ be the orthogonal projection of `j−1 onto FDj

4: `j ← Leftmost-Reachable(`′)

5: let r′ = Rightmost-Take-Off(rj−1)

6: if r′ < `j−1 or r′ = null then

7: rj ← null

8: else

9: rj ← rj(I), for I being the reachable interval containing r′

10: if `j or rj is null then

11: return null

12: return `m, rm

on or before u on FDj . Note that both these functions can be computed in O(1)
time using the pointers stored in the free-space map.

Theorem 2. Let the free-space map of P and Q be given. Then, for any query
point u ∈ F0, `m(u) and rm(u) can be computed in O(m) time.

Proof. The procedure for computing `m(u) and rm(u) for a query point u ∈ F0

is described in Algorithm 1. The following invariant holds during the execution
of the algorithm: After the j-th iteration, `j = `j(u) and rj = rj(u). We prove
this by induction on j. The base case, `0 = r0 = u, trivially holds. Now, suppose
inductively that `j−1 = `j−1(u) and rj−1 = rj−1(u). We show that after the j-th
iteration, the invariant holds for j. We assume, w.l.o.g., that Rj(u) is non-empty,
i.e., `j(u) 6 rj(u). Otherwise, the last take-off point from R(j−1) will be either
null, or smaller than rj−1, which is then detected and handled by lines 6–7.

We first show that `j = `j(u). Suppose by contradiction that `j 6= `j(u). If
`j < `j(u), then we draw a vertical line from `j to FDj−1 (see Figure 2). This
line crosses any monotone path from `j−1 = `j−1(u) to `j(u) at a point x. The
line segment x`j is completely in the free space, because otherwise, it must be
cut by an obstacle, which contradicts the fact that the free space inside a cell
is convex. But then, `j becomes reachable from `j−1 through x, contradicting

FDj−1

FDj

`j(u)

`j−1

`′ `j

x

rj

rj−1r′

rj(u)

I

Fig. 2. Proof of Theorem 2.

the fact that `j(u) is the leftmost reachable point in R(j). The case, `j > `j(u),
cannot arise, because then, `j(u) is a reachable point after `′ and before `j , which
contradicts our selection of `j as the leftmost reachable point of `′ in line 4.

We can similarly show that rj = rj(u). Suppose by contradiction that rj 6=
rj(u). The case rj > rj(u) is impossible, because then, rj is a point on R(j)
reachable from R(j − 1) which is after rj(u). This contradicts the fact that
rj(u) is the rightmost point on R(j). If rj < rj(u) (see Figure 2), then rj(u) is
reachable from a point x ∈ R(j − 1) with x < r′, because r′ is the rightmost
take-off point on or before rj−1. But then, by Lemma 2, rj(u) is reachable from
r′, which contradicts the fact that rj is the left pointer of the reachable interval
I containing r′. ut

Theorem 3. Given two polygonal curves P and Q of size n and m, respectively,
we can build in O(nm) time a data structure of size O(nm), such that for any
query point u ∈ F0, a compact representation of Rm(u) can be reported in O(m)
time.

Remark The query time in Theorem 3 can be improved to O(logm), as shown
in the appendix. However, we only use the O(m) query time for the applications
provided in the next section.

4 Applications

In this section, we provide some of the applications of the free-space map.

Partial Curve Matching Given two polygonal curves P and Q, and an ε > 0,
the partial curve matching problem involves deciding whether there exists a
subcurve R ⊆ P such that δF (R,Q) 6 ε. As noted in [3], this is equivalent to
deciding whether there exists a monotone path in the free space from FD0 to
FDm. This decision problem can be efficiently solved using the free-space map.
For each feasible intervals I on FD0, we compute a compact representation of
Rm(left(I)) using Theorem 3 in O(m) time. Observe that Rm(I) = ∅ if and
only if Rm(left(I)) = ∅. Therefore, we can decide in O(nm) time whether there
exists a point on FDm reachable from FD0. Furthermore, we can use parametric
search as in [3] to find the smallest ε for which the answer to the above decision
problem is “yes” in O(nm log(nm)) time. Therefore, we obtain:

Theorem 4. Given two polygonal curves P and Q of size n and m, respectively,
we can decide in O(nm) time whether there exists a subcurve R ⊆ P such that
δF (R,Q) 6 ε, for a given ε > 0. A subcurve R ⊆ P minimizing δF (R,Q) can be
computed in O(nm log(nm)) time.

Closed Curves An important variant of the Fréchet metric considered by Alt
and Godau [3] is the following. Given two closed curves P and Q, define

δC(P,Q) = inf
s1,s2∈R

δF (R shifted by s1, Q shifted by s2)

to be the closed Fréchet metric between P and Q. This metric is of significant
importance for comparing shapes.

Consider a diagram D of size 2n×m obtained from concatenating two copies
of the standard free-space diagram of P and Q. Alt and Godau showed that
δC(P,Q) 6 ε if and only if there exists a monotone feasible path in D from (t, 0)
to (n+ t,m), for a value t ∈ [0, n]. We show how such a value t, if there is any,
can be found efficiently using a free-space map built on top of D.

Observation 2 Let i be a fixed integer (0 < i 6 n), I = [a, b] be the feasible
interval on the i-th cell of FD0, and J = [c, d] be the feasible interval on the
(i+n)-th cell of FDm. Then there is a value t ∈ [i− 1, i] with (t, 0) ; (n+ t,m)
if and only if max((`m(I))x, c) 6 b+ n and min((rm(I))x, d) > a+ n.

We iterate on i from 1 to n, and check for each i if a desired value t ∈ [i−1, i]
exists using Observation 2. Each iteration involves the computation of `m(I) and
rm(I) that can be done in O(m) time using the free-space map. The total time
is therefore O(nm).

Theorem 5. Given two closed polygonal curves P and Q of size n and m,
respectively, we can decide in O(nm) time whether δC(P,Q) 6 ε, for a given
ε > 0. Furthermore, δC(P,Q) can be computed in O(nm log(nm)) time.

Maximum Walk An interesting variant of the Fréchet distance problem is the
following: Given two curves P and Q and a fixed ε > 0, find a maximum-length
subcurve of Q whose Fréchet distance to P does not exceed ε. In the dog-person
illustration, this problem corresponds to finding the best starting point on P
such that when the person walks the whole curve Q, his or her dog can walk
the maximum length on P , without exceeding a leash of length ε. We show that
this optimization problem can be solved efficiently in O(nm) time using the free
space map. The following observation is the main ingredient.

Observation 3 Let R be a maximum-length subcurve of P such that δF (R,Q) 6
ε. The starting point of R corresponds to the left endpoint of a feasible interval
I on FD0, and its ending point corresponds to rm(I).

By Observation 3, we only need to test n feasible intervals on FD0, and their
right pointer on FDm to find the best subcurve R. Note that, given the two
endpoints of a subcurve R on the free-space map, finding the actual length of
R on the original curve P can take up to O(n) time. To speed up the length
computation step, we can use a table lookup method used by the authors in [10]
to answer each length query in O(1) time, after O(n) preprocessing. The total
time for computing the maximum-length subcurve R will be therefore O(nm).

Theorem 6. Given two polygonal curves P and Q of size n and m, respectively,
and a parameter ε > 0, we can find in O(nm) time a maximum-length subcurve
R ⊆ P such that δF (R,Q) 6 ε.

Rj

Li

Fig. 3. An example of a free-space surface.

5 Matching a Curve in a DAG

Let P be a polygonal curve of size n, and G be a connected graph with m edges.
Alt et al. [2] presented an O(nm logm)-time algorithm to decide whether there
is a path π in G with Fréchet distance at most ε to P , for a given ε > 0. In
this section, we improve this result for the case when G is a directed acyclic
graph (DAG), by giving an algorithm that runs in only O(nm) time. The idea
is to use a sequential reachability propagation approach similar to the one used
in Section 3. Our approach is structurally different from the one used by Alt
et al. [2]. In particular, their algorithm has Θ(nm logm) running time in the
worst case even if the input graph is a DAG or a simple path.

We first borrow some notation from [2]. Let G = (V,E) be a connected DAG
with m edges, such that V = {1, . . . , ν} corresponds to points {v1, . . . , vν} ⊆ R2,
for ν 6 m+1. We assume, w.l.o.g., that the elements of V are numbered accord-
ing to a topological ordering of the vertices of G. Such a topological ordering
can be computed in O(m) time. We embed each edge (i, j) ∈ E as an oriented
line segment sij from vi to vj . Each sij is continuously parametrized by values
in [0, 1] according to its natural parametrization, namely, sij : [0, 1]→ R2.

For each vertex j ∈ V , let FDj := FDε(P, vj) be the one-dimensional free-
space diagram corresponding to the path P and the vertex j. We denote by Lj
and Rj the left endpoint and the right endpoint of FDj , respectively. Moreover,
we denote by Fj the set of feasible points on FDj . For each (i, j) ∈ E, let
FDij := FDε(P, sij) be a two-dimensional free-space diagram, which consists
of a row of n cells. We glue together the two-dimensional free-space diagrams
according to the adjacency information of G, as shown in Figure 3. The resulting
structure is called the free-space surface of P and G, denoted by FSε(P,G). We
denote the set of feasible points in FSε(P,G) by Fε(P,G).

Given two points u, v ∈ Fε(P,G), we say that v is reachable from u, denoted
by u ; v, if there is a monotone feasible curve from u to v in Fε(P,G), where
monotonicity in each cell of the surface is with respect to the orientation of the
edges of P and G defining that cell. Given a set of points S ⊆ Fε(P,G), we
define Rj(S) := {v ∈ Fj | ∃u ∈ S s.t. u; v}. Let L = ∪j∈V (Lj ∩Fj). For each

Algorithm 2 Decision-DAG-Matching(P,G, ε)

1: for each j ∈ V in a topological order do

2: R(j) ← Rj(Lj ∩ Fj) ∪ (∪(i,j)∈ERj(R(i)))

3: let S = ∪j∈V (Rj ∩R(j))

4: return true if S 6= ∅, otherwise return false

j ∈ V , we define the reachable set R(j) := Rj(L). Observe that there is a path
π in G with δF (P, π) 6 ε if and only if there is a vertex j ∈ V with Rj ∈ R(j).

Theorem 7. Given a polygonal curve P of size n and a directed acyclic graph
G of size m, we can decide in O(nm) time whether there is a path π in G with
δF (P, π) 6 ε, for a given ε > 0. A path π in G minimizing δF (P, π) can be
computed in O(nm log(nm)) time.

Proof. Algorithm 2 computes, for each vertex j ∈ V , the reachable set R(j) in
a topological order. It then returns true only if there is a vertex j ∈ V such that
Rj is reachable which indicates the existence of a path π in G with δF (P, π) 6 ε.
To prove the correctness, we only need to show that for every vertex j ∈ V , the
algorithm computes R(j) correctly. We prove this by induction on j. Suppose
by induction that the set R(i) for all i < j is computed correctly. Now consider
a point u ∈ Fj . If u ∈ R(j), then there exists a vertex k < j such that Lk
is connected to u by a monotone feasible curve C in FSε(P,G). If k = j, then
u ∈ R(j) because Rj(Lj ∩Fj) is added to R(j) in line 2. If k < j, then the curve
C must pass through a vertex i with (i, j) ∈ E. Since the vertices of V are sorted
in a topological order, we have i < j, and hence, R(i) is computed correctly
by the induction hypothesis. Hence, letting x = C ∩ Fi, we have x ∈ R(i).
Furthermore, we know that x is connected to u using the curve C. Therefore, the
point u is in Rj(R(i)), and hence, is added to R(j) in line 2. Similarly, we can
show that if u 6∈ R(j), then u is not added to R(j) by the algorithm. Suppose
by contradiction that u is added to R(j) in line 2. Then either u ∈ Rj(Lj ∩ Fj)
or u ∈ Rj(R(i)), for some i < j. But by the definition of reachability, both cases
imply that u is reachable from a point in L, which is a contradiction.

For the time complexity, note that each Rj(R(i)) in line 2 can be computed
in O(n) time using Lemma 4. Moreover, Rj(Lj ∩ Fj), for each j ∈ V , can be
computed by finding the largest feasible interval on Fj containing Lj in O(n)
time. Therefore, processing each edge (i, j) takes O(n) time, and hence, the
whole computation takes O(nm) time. Once the algorithm finds a reachable
left endpoint v, we can construct a feasible monotone path connecting a right
endpoint u ∈ L to v by keeping, for each reachable interval I on R(j), a back
pointer to a reachable interval J on R(i), (i, j) ∈ E, from which I is reachable.
The path u ; v can be constructed by following the back pointers from v to
u, in O(m) time. For the optimization problem, we use parametric search as
in [2, 3], to find the value of δF (P, π) by an extra log(nm)-factor, namely, in
O(nm log(nm)) time. ut

Remark As noted in [2], it is straight-forward to modify the algorithm to allow
paths in G to start and end anywhere inside edges of the graph, not necessarily
at the vertices. This can be easily done by allowing the feasible path found by our
algorithm to start and end at any feasible point on the left and right boundary
of FDij , for each edge (i, j) ∈ E.

6 Conclusions

In this paper, we presented improved algorithms for some variants of the Fréchet
distance problem, including partial curve matching, closed Fréchet distance,
maximum walk, and matching a curve in a DAG. Our improved results are
based on a new data structure, called free-space map, that might be applicable
to other problems involving the Fréchet metric. It remains open whether the
same improvements obtained here can be achieved for matching curves inside
general graphs (a similar improvement is recently obtained for complete graphs
in [11]). Proving a lower bound better than Ω(n log n) for variants of the Fréchet
distance studied in this paper is another major problem left open.

References

1. H. Alt. The computational geometry of comparing shapes. Efficient Algorithms,
pages 235–248, 2009.

2. H. Alt, A. Efrat, G. Rote, and C. Wenk. Matching planar maps. J. Algorithms,
49(2):262–283, 2003.

3. H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. Int. J. of Comput. Geom. Appl., 5:75–91, 1995.

4. K. Buchin, M. Buchin, and J. Gudmundsson. Constrained free space diagrams: a
tool for trajectory analysis. Int. J. of Geogr. Inform. Sci., 24(7):1101–1125, 2010.

5. K. Buchin, M. Buchin, C. Knauer, G. Rote, and C. Wenk. How difficult is it to
walk the dog? In Proc. 23rd EWCG, pages 170–173, 2007.

6. K. Buchin, M. Buchin, and Y. Wang. Exact algorithms for partial curve matching
via the Fréchet distance. In Proc. 20th ACM-SIAM Sympos. Discrete Algorithms,
pages 645–654, 2009.

7. A. F. Cook and C. Wenk. Geodesic Fréchet distance inside a simple polygon. In
Proc. 25th Sympos. Theoret. Aspects Comput. Sci., volume 5664 of Lecture Notes
Comput. Sci., pages 193–204, 2008.

8. A. Efrat, L. J. Guibas, S. Har-Peled, J. S. B. Mitchell, and T. M. Murali. New
similarity measures between polylines with applications to morphing and polygon
sweeping. Discrete Comput. Geom., 28(4):535–569, 2002.

9. M. Jiang, Y. Xu, and B. Zhu. Protein structure-structure alignment with discrete
Fréchet distance. J. Bioinform. Comput. Biol., 6(1):51–64, 2008.

10. A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-Zadeh. Fréchet distance
with speed limits. Comput. Geom. Theory Appl., 44(2):110–120, 2011.

11. A. Maheshwari, J.-R. Sack, K. Shahbaz, and H. Zarrabi-Zadeh. Staying close to a
curve. In Proc. 23rd Canad. Conf. Computat. Geom., 2011, to appear.

12. E. Sriraghavendra, K. Karthik, and C. Bhattacharyya. Fréchet distance based
approach for searching online handwritten documents. In Proc. 9th Internat. Conf.
Document Anal. Recognition, pages 461–465, 2007.

A Improved Query Time

In this appendix, we show how the query time in the free-space map can be
improved from O(m) to O(logm), without increasing the preprocessing time and
space. This improved query time is crucial for applications such as the minimum
walk problem.

As a subproblem in our improved solution, we need to efficiently solve a
special case of an offline vertical ray shooting problem, which is defined as follows.
Consider a vertical slab [0, 1]×[0,m] (see Figure 4). For each 0 6 i 6 m, there are
two (possibly empty) segments in the slab at height i, attached to the boundary
of the slab, one from left and the other from right. Given a query point q,
the vertical ray shooting problem involves finding the first segment in the slab
directly above q. If the query points are restricted to be among the endpoints of
the segments, we show that the vertical ray shooting queries can be answered in
O(1) time, after O(m) preprocessing time.

Lemma 5. Let S be a set of segments si = [0, ai] × {i}, and T be a set of
segments ti = [bi, 1] × {i} with 0 6 ai 6 bi 6 1, for 0 6 i 6 m. We can find
for each segment si ∈ S (resp., ti ∈ T), the first segment in S ∪ T directly above
right(si) (resp., left(ti)) in O(m) total time.

Proof. Algorithm 3 performs the task. It assigns to each segment si, an up
pointer that points to the first segment directly above right(si), if such a seg-
ment exists. The up pointers for segments of T can be computed analogously.
The algorithm makes use of a queue Q, which is empty at the beginning, and
supports the standard operations push(), pop(), and top(), along with two ad-
ditional operations bottom() and bottom-pop(), that are analogous to top()
and pop(), respectively, but applied to the bottom of the queue.

We say that a segment s ∈ S is covered by a segment t ∈ S ∪ T , if a
vertical ray from s intersects t. Let Si = {s0, . . . , si} and Ti = {t0, . . . , ti}, for
0 6 i 6 m. The following invariant is maintained by the algorithm: At the end
of iteration i, Q contains a subset of segments from Si that are not covered by
any segment from Si ∪ Ti, in a decreasing order of their lengths, from bottom
to the top. The invariant clearly holds for i = 0. Suppose by induction that the

Algorithm 3 Ray-Shooting(S, T)

1: Q ← ∅
2: for i from 0 to m do

3: while |Q.top()| 6 |si| do
4: Q.pop().up ← si

5: while |Q.bottom()| > 1− |ti| do
6: Q.bottom-pop().up ← ti

7: Q.push(si)

i− 1 i

si ti

Fig. 4. An example of the execution of Algorithm 3 for two steps i−1 and i. Segments
in the queue are shown in bold.

invariant holds for i − 1. In the i-th iteration, we first pop out from the top of
the queue all segments that are covered by si, in lines 3–4. Then, we remove
from the bottom of the queue all segments covered by ti, in lines 5–6. Finally,
we add si to the top of the queue. (See Figure 4 for an illustration.) It is easy
to verify that after the insertion of si, the segments of Q are still sorted in a
decreasing order of their lengths (because we have already removed segments
smaller than si from Q), and that, no segment of Q is covered by a segment
in Si ∪ Ti (because we have removed covered segments from Q). Furthermore,
it is clear that any segment s removed from Q is assigned to the first segment
that is directly above right(s), because we are processing segments in order from
bottom to the top. The correctness of the algorithm therefore follows. Note that
after the termination of the algorithm, Q still contains some uncovered segments
from S, whose up pointers are assumed to be null, as they are not covered by
any segment in S∪T . Since each segment of S is inserted into and removed from
the queue at most once, lines 4 and 6 of the algorithm are executed at most m
times, and hence, the whole algorithm runs in O(m) time. ut

Remark Alt et al. [2] have employed a very similar idea to compute the left and
right pointers in a row of cells in the free-space diagram.

Theorem 8. Given two polygonal curves P and Q of size n and m, respec-
tively, we can build in O(nm) time a data structure of size O(nm), such that for
any query point u ∈ F0, a compact representation of Rm(u) can be reported in
O(logm) time.

Proof. We first build a free-space map as in Theorem 3 in O(nm) time. Let I be
a feasible interval on F0. For each u ∈ I, we have rm(u) = rm(I) = rm(right(I)).
Therefore, by storing rm(I) for all feasible intervals I on F0, we can report rm(u)
for each query point u ∈ F0 in O(1) time. Since there are O(n) feasible intervals

on F0, and computing each right pointer takesO(m) time by Theorem 2, this step
takes O(nm) time in total. To report `m(u) quickly, we store for each reachable
interval I ∈ R(j), 0 < j < m, the pointer `m(I) in the data structure. We can
compute all these left pointers in O(nm) time as follows. We first preprocess
each column of the free-space map for vertical ray shooting as in Lemma 5, by
assuming horizontal segments to be non-reachable intervals on each row FDj .
To compute left pointers, we inductively process the free-space map from top to
bottom. Suppose that the left pointers are computed and stored for all reachable
intervals above FDj , and let I be a reachable interval on FDj , with q = left(I).
We can find the first non-reachable segment s above q using our ray shooting
data structure in O(1) time. If no such s exists, `m(q) is directly above q on
R(m). Otherwise, as in Algorithm 1, we project q directly to a point q′ ∈ s, and
then, find the first reachable point p after q′. If such a point p exists, it should be
the left endpoint of a reachable interval I ′, for which we have already stored the
pointer `m(left(I ′)). Therefore, `m(q) = `m(left(I ′)) can be computed in O(1)
time. As a result, finding all left pointers takes O(n) time for each FDj , and
O(nm) time for the whole free-space map.

For each feasible interval I on F0, we partition I into O(m) subintervals,
such that for all points u in a subinterval, the first segment directly above u (in
the ray shooting data structure) is the same. Such a partitioning can be easily
obtained by scanning each column of the free-space map from bottom to the
top. The total number of subintervals obtained this way is O(nm). Now, for
each subinterval J on F0, we compute `m(J) in the same way described above in
O(1) time. Namely, we find the unique segment s above J , find the first reachable
point p after s, and take the pointer `m(p), which is stored in the data structure.
The total time and space needed for this step is therefore O(nm). For any query
point u ∈ F0, we first locate the subinterval J containing u in O(logm) time.
Now, `m(u) = `m(J) and rm(u) = rm(I) for the feasible interval I containing
subinterval J , both accessible in O(1) time. ut

Note that the only expensive operation in our query algorithm is to locate
the subinterval containing the query point. If the subinterval is given, then the
query can be answered in O(1) time.

Minimum Walk Given two curves P and Q and a fixed ε > 0, the minimum
walk problem asks for the minimum-length subcurve of P that a person can
walk while his/her dog walks the whole curve Q without exceeding a leash of
length ε. This optimization problem can be solved efficiently using our extended
data structure.

Theorem 9. Given two polygonal curves P and Q of size n and m, respectively,
and a parameter ε > 0, we can find in O(nm) time a minimum-length subcurve
R ⊆ P such that δF (R,Q) 6 ε.

Proof. Let R be a minimum-length subcurve of P such that δF (R,Q) 6 ε. It is
easy to verify that the starting point of R corresponds to the right endpoint of
a subinterval J on F0, and its ending point corresponds to `m(J). Therefore, to

find the best subcurve R, we only need to check the right endpoints of O(nm)
subintervals on FD0 and their corresponding left pointers. Since the left pointer
for each subinterval is already stored, as shown in the proof of Theorem 8,
the query time for each subinterval is O(1). The total time needed is therefore
O(nm). ut

