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Abstract. Motivated by the bus escape routing problem in printed cir-
cuit boards, we revisit the following problem: given a set of n axis-parallel
rectangles inside a rectangular region R, find the maximum number of
rectangles that can be extended toward the boundary of R, without over-
lapping each other. We provide an efficient algorithm for solving this
problem in O(n2 log3 n log log n) time, improving over the current best
O(n3)-time algorithm available for the problem.

1 Introduction

In the maximum disjoint routing problem, we are given a set of n axis-parallel
rectangles inside a rectangular region R, and the goal is to find a maximum
number of rectangles that can be extended to the boundary of R, without over-
lapping any other rectangle, whether it is extended or not. An instance of the
problem is illustrated in Figure 1.

The maximum disjoint routing problem is motivated by the escape routing
problem in printed circuit boards (PCBs). The objective in the escape routing
problem is to route the nets from their pins to the boundary of the enclosing
component. There is a vast amount of work on this problem. In particular, the
problem of routing a maximum number of nets to the boundary of component
using disjoint paths on a grid has been solved efficiently using network flow
algorithms [3, 4]. Other flow-based solutions to PCB routing can be found in
[5, 6, 14].

Most solutions available for PCB routing including the flow-based ones are
net-centric, in the sense that they route the nets individually, without consider-
ing a top-level bus structure. However, recent work on escape routing has been
shifted to the bus-level, where nets are grouped into buses, and the nets from
each bus is required to be routed together [8–11, 13]. In this model, the routing
of a bus is obtained by projecting the bounding box of the bus onto one of the
four sides of the bounding component. If we require to route a maximum number
of buses in a single layer without any conflict, the problem becomes equivalent
to the maximum disjoint routing problem, as defined above.

The first polynomial-time algorithm for the maximum disjoint routing prob-
lem was given by Kong et al. [8]. They presented an exact algorithm that solves



Fig. 1: An instance of the maximum disjoint routing problem. Input rectangles are
shown in dark, and extended rectangles are shown in grey.

the problem in O(n6) time. Their algorithm indeed solves a more general problem
of finding a maximum disjoint subset of boundary rectangles, where each bound-
ary rectangle is attached to one of the four sides of the bounding box R. Assadi
et al. [2] improved this running time by providing an O(n4)-time algorithm for
the maximum disjoint routing problem. Ahmadinejad and Zarrabi-Zadeh [1] pre-
sented an O(n4)-time algorithm that solves the more general problem of finding
the maximum disjoint subset of boundary rectangles. Very recently, Keil et al. [7]
improved this running time to O(n3) by presenting an algorithm that solves the
maximum independent set problem on outerstring graphs.

Our contribution. In this paper, we revisit the maximum disjoint routing prob-
lem, and present a new algorithm that solves the problem in O(n2 polylog(n))
time. This improves over the current best O(n3)-time algorithms available for the
problem [7]. The main ingredient of our improved result is an efficient solution
for a special case of the problem in which each rectangle is a single point. We
use a dynamic programming approach equipped with a geometric data structure
to solve the point version of the problem efficiently. Our solution involves trans-
forming the points into four dimensions, and using a geometric range searching
structure to quickly query and compute subproblems. We then show how our
solution for the point version can be extended to the general rectangle case,
within the same time bound.

2 Preliminaries

Let S be a set of n axis-parallel rectangles located inside an axis-parallel rect-
angular region R in the plane. For each rectangle r ∈ S and each direction
d ∈ {up, down, left, right}, we denote by δ(r, d) the rectangle obtained by ex-
tending the rectangle r in direction d toward the boundary of R. We call direction
d a free direction for rectangle r, if δ(r, d) does not collide with the initial posi-
tion of any other rectangle. By checking each pair of rectangles, we can find the
free directions for all rectangles in O(n2) time.
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For a rectangle r, we denote by left(r) and right(r) the x-coordinate of the left
and the right side of r, respectively. Similarly, we denote by top(r) and bottom(r)
the y-coordinate of the top and bottom side of r, respectively. Let N = 2n+ 2.
We define V = {v1, . . . , vN} to be the set of all vertical lines obtained from
extending the left and right sides of the rectangles in S, as well as the vertical
sides of R, sorted from left to right. Similarly, we define H = {h1, . . . , hN} to be
the set of all horizontal lines obtained from extending the top and bottom sides
of the rectangles in S, as well as the horizontal sides of R, sorted from top to
bottom.

3 Subproblems

In order to solve the maximum disjoint routing problem, we first define three
subproblems, and show how they can be solved efficiently. The three subproblems
are the followings:

– OneWayd(i, j, k): where 1 ⩽ i < j ⩽ N , 1 ⩽ k ⩽ N , and d is one of the
four possible directions. If d ∈ {up, down}, then OneWayd(i, j, k) is equal to
the maximum number of rectangles lying completely in the area bounded
by vi, vj , and hk, that can be routed disjointly toward direction d. If d ∈
{left, right}, then we want to solve the same problem for the rectangles
lying in the region bounded by hi, hj , and vk.

– Parallelk(i, j): where 1 ⩽ i < j ⩽ N , and k ∈ {horz, vert}. If k = vert, then
the objective is to find the maximum number of rectangles lying completely
in the area between vi and vj that can be routed disjointly toward up and
down. If k = horz, then we want to solve the same problems for the rectangles
between hi and hj that can be routed toward right and left.

– Cornerk(i, j): where 1 ⩽ i, j ⩽ N , and k is one of the four corners of R.
If k is the top-left corner, then the goal is to find the maximum number
of rectangles lying completely in the top-left corner of R bounded by vi
and hj , that can be routed toward up and left. The subproblem is defined
analogously for the other three corners.

Whenever the subscripts d and k are clear from the context, we simply drop
them in our notations.

Lemma 1. Each instance of Parallel can be computed in O(1) time, after O(n2)
preprocessing time.

Proof. Consider a vertical instance of Parallel (i.e., with k = vert). Suppose that
direction d ∈ {up, down} is free for a rectangle r. Then, for any other rectangle
t ̸= r, δ(r, d) will not collide with any of t, δ(t, up), and δ(t, down). Hence, the
answer to Parallel(i, j) is equal to the number of rectangles between vi and vj ,
for which at least one of the directions in {up, down} is free. Therefore, each
instance of Parallel(i, j) can be solved in O(n) time, leading to O(n3) overall
time. To reduce the total processing time, we precompute and store the values
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of Parallel(1, i), for all 1 ⩽ i ⩽ N in O(n2) time (note that v1 represents the left
side of R). Now, the answer to Parallel(i, j) can be computed as Parallel(1, j)−
Parallel(1, i− 1) in constant time. ⊓⊔

Lemma 2. Each instance of OneWay can be computed in O(1) time, after
O(n2) preprocessing time.

Proof. Consider an instance of OneWay, toward the up direction. Similar to
the previous lemma, the answer to OneWay(i, j, k) is equal to the number of
rectangles in the specified region for which up is a free direction. Similar to
Lemma 1, we first initialize the values of OneWay(1, j, k) in O(n2) time. In
order to perform the initialization, we obtain a list L containing all rectangles
in S sorted by the y-coordinates of their bottom side in a decreasing order in
O(n log n) time. For each 1 ⩽ j ⩽ N , we then do the following: Let Qj be a
queue that contains all the rectangles lying between v1 and vj , ordered by the
decreasing order of their bottom side. Each Qj can be obtained from L in O(n)
time. We now loop through all values in H from top to bottom, and for each hk ∈
H, we pop all the rectangles in front of the queue which lie completely between
v1, vj and hk. The answer to OneWay(1, j, k) is equal to OneWay(1, j, k−1) plus
the number of popped rectangles for which the direction up is free. Therefore, we
can solve all instances with i = 1 in O(n2) time. The answer to OneWay(i, j, k)
can be computed from OneWay(1, j, k)−OneWay(1, i− 1, k) in constant time.

⊓⊔

Lemma 3. After O(n2) preprocessing time, each instance of Corner can be com-
puted in O(1) time.

Proof. We reduce this subproblem to an instance of the maximum disjoint
boundary rectangles (MDBR) problem [1], for which an O(n2)-time solution
is available. Assume, without loss of generality, that our instance is a top-left
corner. We reduce it to an instance of MDBR as follows. For each rectangle r ∈ S,
we replace r by at most two rectangles δ(r, d), for each direction d ∈ {up, left}
which is free for r. It is easy to verify that the maximum number of disjoint rect-
angles in this new instance is exactly equal to Corner(i, j). It is shown in [1] that
after O(n2) preprocessing time, we can find the maximum number of disjoint
rectangles bounded by vi and hj , for each pair (i, j) in O(1) time. Therefore, the
lemma follows. ⊓⊔

4 Main Problem

Using Lemmas 1 to 3, we can answer each instance of the OneWay, Parallel,
and Corner subproblems in constant time, after O(n2) preprocessing time. In
this section, we show how to solve the main problem efficiently using these
subproblems. To this end, we first consider a special case of the problem in
which each rectangle in S is a single point. We then generalize our algorithm for
the point version to the normal rectangle case.
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4.1 The Point Version

Here, we assume that S is a set of n points inside R. Consider an optimal solution
to the problem. Let r be the leftmost point in the optimal solution which is
routed to right, and ℓ be the rightmost point which is routed to left. Similarly,
we denote by t and b the bottom-most point routed upward and the topmost
point routed downward, respectively. We distinguish between the following two
cases:

– Case 1: either ℓ is to the left of r (i.e., ℓx < rx), or b is below t (i.e., by < ty)
– Case 2: rx ⩽ ℓx and ty ⩽ by

Lemma 4. In the first case, the optimal solution can be found in O(n2) time.

Proof. Assume, w.l.o.g., that ℓx < rx. (The other case, by < ty, can be handled
similarly.) We divide R into five independent regions, as shown in Figure 2. For
each region, the directions to which the points in that region can be routed are
shown by arrows.

Fig. 2: The first case

The maximum number of points that can be routed in regions A, B, C, and
D can be obtained from the Corner subproblems. For region E, the answer can
be obtained from the Parallel subproblems. Therefore, the solution for this case
can be obtained in O(1) time. Since ℓ and r are not known in advance, we check
all possible pairs (ℓ, r) in O(n2) time, and return the best solution. ⊓⊔

Lemma 5. If the second case holds, the optimal solution can be computed in
O(n2 log3 n log log n) time.

Proof. In this case, the four points ℓ, r, t, and b form a “wheel structure”: ℓ is
to the right of r, and t is below b. We assume, w.l.o.g., that t is to the left of
b. The rectangle R is partitioned by this wheel structure into nine regions, as
shown in Figure 3. By the definition of the points forming the wheel structure,
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Fig. 3: The second case

the central region is empty. In the other eight regions, labelled by A to H, the
points can be routed toward the directions shown by arrows.

Using subproblems OneWay and Corner, we can find answers to each of these
regions in O(1) time. Therefore, the optimal solution in this case can be simply
obtained by checking all possible O(n4) configurations defined by ℓ, r, t, and b.
In the following, we employ new ideas to perform this step more efficiently.

Observe that regions A, D, and E are solely defined by t and ℓ. Similarly,
regions C, H, and G are defined by r and b. We can see each pair of points p and
q in the plane as a single point f(p, q) = (px, py, qx, qy) in 4-d space. To solve
the problem efficiently, we use a 4-d range tree T . Our main idea is to fix points
ℓ and t, and then find the best pair r and b for which all these four points form
a wheel structure.

Each pair of points r′ and b′ with r′x ⩽ b′x and b′y ⩽ r′y is a candidate
for r and b in our configuration. For each of these pairs, we know the best
answer for regions C, H, G. Regions B and F also depend on these points.
Since we do not know the locations of t and ℓ in advance, we assume that B
is the complete sub-region of R to the left of r′. Also, we assume that F is
the complete sub-region to the left side and below b′. After selecting ℓ′ and
t′, some of the points currently in B and F will be out of these regions. We
will fix this problem later. For now, we add to T the point f(r′, b′) with value
Corner(C) + Corner(G) +OneWay(H) +OneWay(B) +OneWay(F ). There are
O(n2) such points. We use an augmented dynamic range tree for T that employs
a dynamic version of fractional cascading to support range queries and point
insertions/deletions in O(log3 n log log n) time [12]. The tree itself can be built
in O(n2 log3 n log log n) time.

Now we try to fix ℓ′ and t′ and use T to find the best pair (r′, b′) to form
a wheel structure with a maximum possible answer. Each pair of points (t′, ℓ′)
with t′x ⩽ ℓ′x and ℓ′y ⩽ t′y is a candidate for (t, ℓ). All the pairs of points (r′, b′)
satisfying the following two conditions are candidates for (r, b) with respect to
t′ and ℓ′:

– (r′, b′) forms a wheel structure with (t′, ℓ′), i.e., r′x ⩽ ℓ′x and t′y ⩽ b′y.
– (r′, b′) is a valid candidate for r and b, i.e., r′x ⩽ b′x and b′y ⩽ r′y.
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These conditions together define a 4-d subspace in T . We can use a query on T
to find the maximum value in this subspace in O(log3 n log log n) time. The only
problem is that for regions B and F , we are counting some points which are not
part of those regions. These points have the following properties:

i) The points below or on the left side of t′ which are counted in region B.

ii) The points on the left side of ℓ′ which are counted in region F .

In order to get rid of these points, we use the following approach. First we loop
through all the points as t′. Upon fixing t′, we loop through all the points below
or to the left of t′. None of these points must be considered in region B, regardless
of where r and b are. For each such point, say p, first we check if direction up is
free for it. If this direction is not free, then point p has no impact on the value
of OneWay(B). Hence, we do not need to take any action. If the direction up
is free, then we must remove the impact of p in region B for all pairs of points
r′ and b′ that counted p in B. It means that p must be to the left of r′. All
these pairs form a 4-d subspace in T . Therefore, we can call a query on T to
subtract one from the value of all pairs in this subspace. This action can be done
in O(n log3 n log log n) time for each point t′.

Now we only have to deal with the points in case (ii). After selecting t′, all
points below and to the right of t′ are candidates for ℓ′. Since ℓ′ must be on
the right side of t′, no point to the left of t′ must be considered in region F ,
regardless of where r′ and b′ are. We can remove the impact of these points from
region F exactly like what we did for the points in region B. Now, we sort all
the candidates for ℓ′ from left to right, and loop through them. We also set a
vertical sweep line on t′ and advance it to the left toward ℓ′ when we change
ℓ′. Whenever our sweep line hits a point like p, p is to the left of ℓ′, and hence,
it must not be counted in region F . We can remove its impact on F like what
we did in the previous cases. Since our sweep line hits each point at most once,
we perform at most one query on T for each point, and hence, the overall time
is O(n log3 n log log n). Therefore, after fixing points t′ and ℓ′, we can use our
range tree T to find the points r′ and b′, yielding the best possible answer for
regions B,C,D, F and G. The best answers for regions A,H and E only depend
on points t′ and ℓ′. Thus, we can find the best answer for all the eight regions
using our subproblems and a query on T . After we found the best answer for a
particular point t′, we need the reset our range tree to its initial condition, so
that we can use the same method for the next candidate t′. In order to do this,
we can save all the −1 queries that we performed, and call +1 queries on the
same regions, to return T to its initial state. As a result, we can check all the
cases and return the best solution in O(n2 log3 n log log n) time. ⊓⊔

The following is a corollary of Lemmas 4 and 5.

Theorem 1. The point version of the maximum disjoint routing problem can
be solved in O(n2 log3 n log log n) time.
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4.2 The Rectangle Version

Here, we consider the general rectangles version of the problem, and show how
the algorithm described in the previous section for the point version can be
extended to the rectangle case. Let S be a set of n rectangles inside R. Consider
an optimal solution to the problem. Let r be the rectangle with the leftmost
left side routed to the right in the optimal solution, ℓ be the rectangle with the
rightmost right side routed to the left, b be the rectangle with the topmost top
side routed downward, and t be the rectangle with the bottom-most bottom side
routed upward. Again, we consider the problem in two cases:

– Case 1: either left(r) > right(ℓ), or bottom(t) > top(b).
– Case 2: left(r) ⩽ right(ℓ) and bottom(t) ⩽ top(b).

Lemma 6. In the first case, the optimal solution can be found in O(n2) time.

Proof. Assume, w.l.o.g., that left(r) > right(ℓ). Similar to the point version, R is
partitioned by r and ℓ into five regions, as shown in Figure 4. The only difference
here is that there might be some rectangles that reside in more than one region
(i.e., do not completely reside in any region), and hence, they do not contribute
to the solutions obtained for the subproblems. We call such rectangles the shared
rectangles.

Fig. 4: The first case in the rectangle version.

For each shared rectangle, the restrictions for the intersecting regions also
apply to the shared rectangle. It is easy to verify that each shared rectangle in
the first case has at most one possible routing direction. We call this direction
the forced direction for the rectangle. We claim that if the forced direction for a
shared rectangle s is free, then in the optimal solution, s must be routed toward
that forced direction.

To prove the claim, assume w.l.o.g. that s resides between regions A and E,
and that the up direction is free for s. No rectangle in A can be routed right,
and no rectangle in the regions to the right of A can be routed left. Moreover, no
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shared rectangle between A and E can be routed either left or right, because of
the way ℓ and r are chosen. Therefore, there is no horizontally-routed rectangle
that collides with δ(s, up). Since direction up is free for s, there is no rectangle
above s, and hence, extending s to the up direction imposes no new restrictions
on the other rectangles. Therefore, in the optimal solution, s must be routed
upward, otherwise there would be a solution with a larger number of routed
rectangles, contradicting the optimality of the solution. This completes the proof
of the claim.

For each rectangle s, we can check if there exists a shared rectangle with a
free direction in {up, down}, if s is selected as either r or ℓ. Note that for each
rectangle and each direction, there is at most one shared rectangles which is
free in that direction. Therefore, we can preprocess each rectangle and store free
shared rectangles for that rectangle in O(n) time. This preprocessing step takes
O(n2) overall time. After that, for each pair of rectangles as r and ℓ, we can
find the best solution, using the preprocessed subproblems and considering the
shared rectangles, in O(1) time. ⊓⊔

Lemma 7. In the second case, computing the optimal solution can be done in
O(n2 log3 n log log n) time.

Proof. The shared rectangles that arise in the second case are shown in Figure 5.
Each of these shared rectangles has only one forced direction, and hence, they
can be treated in a same way as in the first case.

Fig. 5: The second case in the rectangle version

Note that any rectangle that is shared between regions other than those
showed in Figure 5 can not be routed toward any direction, and hence, they
can be simply omitted. Therefore, like the first case and the point version, we
can find the best solution using preprocessed subproblems and considering the
shared rectangles. ⊓⊔

The main result of this section, which is a corollary of Lemmas 6 and 7, is
summarized as follows.
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Theorem 2. The maximum disjoint routing for a set of n rectangles can be
computed in O(n2 log3 n log log n) time.

5 Conclusions

In this paper, we presented an O(n2 polylog(n))-time algorithm for the maximum
disjoint routing problem, improving over the current best O(n3)-time algorithm
available for the problem. Our algorithm simply generalizes to the weighted
case, where each rectangle is assigned a weight, and the goal is to route a set
of rectangles with maximum total weight. The polylog factor in the runtime of
our algorithm is due to the cost of 4-d range queries. Using a more efficient
data structure for answering range queries, one would be able to shave some
of the log factors from the runtime. The decision version of the problem which
asks whether “all” rectangles can be routed disjointly is interesting on its own.
Finding better algorithms for the decision version is an intriguing problem that
remains open.
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