Finding Paths with Minimum Shared Edges*

Masoud T. Omran', Jérg-Riidiger Sack!, and Hamid Zarrabi-Zadeh?

1School of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6,
Canada.
{mtomran,sack}@scs.carleton.ca
2Department of Computer Engineering, Sharif University of Technology, Tehran, Iran.
zarrabi@sharif.edu

Abstract. Motivated by a security problem in geographic information
systems, we study the following graph theoretical problem: given a graph
G, two special nodes s and ¢ in G, and a number k, find k£ paths from s
to t in G so as to minimize the number of edges shared among the paths.
This is a generalization of the well-known disjoint paths problem. While
disjoint paths can be computed efficiently, we show that finding paths
with minimum shared edges is NP-hard. Moreover, we show that it is
even hard to approximate the minimum number of shared edges within
a factor of 2°8" ° " for any constant ¢ > 0. On the positive side, we show
that there exists a (k—1)-approximation algorithm for the problem, using
an adaption of a network flow algorithm. We design some heuristics to
improve the quality of the output, and provide empirical results.

1 Introduction

In this paper, we address a problem motivated by a security assurance demand
in a geographic information system (GIS) setting. The problem set arose in the
following context. Suppose that a security organization is hired to do planning
for a VIP who wishes to travel safely between two locations. Given the secu-
rity concerns, k paths are determined in pre-trip planning and then, just prior
to actual travel, randomly one path among the k paths is chosen. The fewer
edges that are shared among the pre-trip paths, the higher the level of perceived
security. However, if it becomes unavoidable to share edges among the paths,
guards are employed on those shared edges. Once a guard has been employed
for a particular edge, he/she protects all paths that use this edge. Since guards
are expensive, we want to reduce their total number. We refer to this problem
as Minimum Shared Edges, or MSE for short. The problem is formally defined
as follows:

Problem 1 (Minimum Shared Edges (MSE)). Given a graph G = (V, E), two
special nodes s,t € V, and an integer k > 0, find a set P of k paths from s to
t in G so as to minimize ¢(P) = > .5 A(e), where A(e) = 0 if e is used in at

* Research supported by NSERC, SUN Microsystems and HPCVL. A preliminary
version of this work has been presented at COCOON 2011.

T = <61,(3,17 (310>
my = {ea, €7, €11)
73 = (e, €, €8, €10)
Ty = (62763764761@
5 = <
g — <

€2, €7, €9, @10>
€, €6, €3, €4, €10)

€7

Fig. 1. A graph G with six possible (s, t)-paths, denoted by 71 to me.

most one path of P, and A(e) = 1 otherwise. An edge e with A(e) = 1 is called
a shared edge.

We assume, without loss of generality, that the input graph is directed. Fig-
ure 1 illustrates an instance of the MSE problem on a sample graph. For k = 2,
the minimum possible number of shared edges is zero, attained by two paths m;
and mo. For k = 3, the minimum number of shared edges is two, realized by the
set {my, 72, m3}. Any other set of three paths leads to a higher number of shared
edges.

For the special case where the number of shared edges is required to be zero,
the MSE problem is reduced to the “disjoint paths” problem which can be solved
in polynomial time using standard maximum flow algorithms. In particular, one
can use Goldberg and Rao’s binary blocking flow algorithm [7] to find & dis-
joint paths in a graph G = (V, E) in O(mmin(n?/3, m'/?)log(n?/m)log k) time,
where n = |V| and m = |E|. An improved algorithm is provided for the special
case of k = 2 [15]. See also [9] for the related problem of finding “shortest”
disjoint paths in a graph.

More complex variants of the disjoint paths problem have also been studied
in the literature. The problem of finding a pair of disjoint (s, ¢)-paths such that
the length of the shorter path is minimized is addressed in [16] and proved to
be NP-hard. The authors show that finding a k-approximation of the optimal
solution is NP-hard for any & > 1. Li et al. [13] studied a similar problem in
which the objective is to find a pair of disjoint (s, t)-paths such that the length
of the longer path is minimized and showed that it is NP-hard. Itai et al. [§]
showed that the problem of finding a pair of disjoint (s, t)-paths such that the
length of the shorter and longer path is bounded by A; and As, respectively, is
also NP-hard. The general case of finding k min-sum (s, t)-disjoint paths where
every edge is assigned k different costs and the jth edge cost is associated with
the jth path, has been studied by Li et al. [12] and proved to be NP-hard.

A closely related problem studied in the context of communication networks
is the so-called “k-best paths” problem [3,14]. In this problem, the objective
is to find a set P of k paths with minimum edge sharability, which is defined
analogously to Problem 1, with the only difference that here, for each edge e,
A(e) = 0 if e is used in at most one path of P, otherwise A(e) is equal to the
number of paths containing e minus 1. As shown in [11,17], the k-best paths
problem is polynomially solvable using a minimum-cost flow algorithm.

Despite its close similarity to the k-best paths problem, the minimum shared
edges problem studied in this paper turns out to be substantially more challeng-
ing. In particular, we prove that the minimum shared edges problem is NP-hard.
Moreover, we show that the problem admits no 218" “n_factor approximation,
for any constant ¢ > 0, unless NP C DTIME(nP°¥1°8m). On the other hand,
we show that there exists a (k — 1)-approximation algorithm for the problem,
using a simple adaption of a network flow algorithm. We propose some heuristics
for improving the quality of the algorithm. Our empirical results show that the
resulting algorithm works reasonably well in practice.

2 NP-Hardness Proof

In this section, we prove that the MSE problem is NP-hard. The proof is by
a reduction from the Set Cover problem. The decision version of Set Cover is
defined as follows: Given (X, C,¢), where X is a finite set of elements, C is a
collection of subsets of X, and ¢ is an integer, is there a subset C’ C C with
|C’| < £ such that the member elements of C’ cover X?

Theorem 2. The MSE problem is NP-hard.

Proof. We prove that the following decision version of MSE is NP-complete:
Given (G, k,h), where G is a graph with two distinguished nodes s and ¢, and
k,h € N are two numbers, is there a set P of k paths from s to ¢ such that
the number of edges shared among paths in P is at most h? It is easy to see
that MSE is in NP. A certificate for this problem composed of k paths from s
to ¢, and a certifier can then, in polynomial time, verify whether the number of
shared edges is at most h.

We reduce Set Cover to MSE, by transforming each instance (X, C, ¢) of Set
Cover to an instance (G,k,h) of MSE. The transformation is as follows. We
first add to G the set of nodes V= Vx U Vi U {t}, where Vx = {v, |z € X}
and Vo = {vg, | C; € C'}. We connect every node v, € Vx to a node ve, € Vi
by a directed edge if x € C;. Moreover, we connect every node ve, € Vo by a
directed edge to t. Additionally, we add a node s to G and connect it to every
other node v € Vx U Vi using a path of size ¢ + 1. We call each of these paths
a chain. Figure 2 illustrates our construction on a sample instance of Set Cover.
We complete the transformation by setting k& = | X| + |C| and h = £.

Suppose that there is a set P of k (s,t)-paths in G with at most h shared
edges. We show that there exists a collection C' C C with |C'| < ¢ that covers X.
It is easy to observe that each chain appears in at most one (s, t)-path, because
otherwise more than h (= ¢) edges would be shared. Since the outdegree of s is
equal to the number of paths, k, it follows that each chain is used exactly once,
and thus, each vertex v, € Vx appears in exactly one (s, t)-path. Therefore, only
one outgoing edge from each v, € Vx is used in P, and hence, shared edges are
only among those incident to t. Now, let V/ = {v € V| (v, ¢) is a shared edge}.
Consider a (s, t)-path that goes through a node v, € Vx and a node v € V. We
claim that v € V’. Otherwise, node v is incident to two paths, one coming from

C, C,

(a) (b)

Fig. 2. (a) An instance of the Set Cover problem, with a covering set {C2,C3}. (b)
Reduction from Set Cover to MSE. Dashed lines represent chains of size £ + 1.

v, and the other coming from s via a chain, causing the edge (v,t) to be used
in at least two paths; a contradiction. Therefore, in the induced subgraph G[P],
each node v, € Vx is connected to a node v € V'. The set C' = {C;|v¢, € V'}
is thus a covering of X with |C'| = £.

Conversely, let C’ C C be a covering of X with |C'| < ¢. We show that in
the corresponding graph G, there is a set P of k paths with at most h shared
edges. Let V' = {vg, € Vo |C; € C'}. For each x € X, we define a (s,t)-path
P, as follows. We start from s and follow the chain to v,. Since z is covered
by a collection C; € C’, there is an edge (v,,v¢,) such that ve, € V. So, we
use the edge (v, ve,) to reach from v, to ve,, and then proceed to ¢. The set
Px = {P,|z € X} consists of | X| (s,t)-paths. Now, we define a set Pc of |C]
(s,t)-paths by concatenating, for each C; € C, the chain from s to ve, and the
edge (ve,,t). Let P = Px U Pe. Tt is easy to observe that only edges between
Ve and t can be used in more than one path of P. Since nodes in Vo \ V' are
not touched by the paths in Py, each edge (v,t) for v € Vo \ V' is used exactly
once in P, and hence, the number of shared edges in P is at most |[V/| =h. O

3 Approximation Algorithm

In this section, we provide an approximation algorithm for the minimum shared
edges problem by transforming it to a network flow problem, called “Minimum
Edge-Cost Flow”. The problem definition is as follows.

Problem 8 (Minimum Edge-Cost Flow (MECF)). Given a graph G = (V, E)
with a capacity u(e) € Z* and a cost c(e) € Z7 associated to each edge e € E,
find an integral flow f of value F' from a source node s to a destination node ¢
such that the total cost of edges sending non-zero flow, i.e., ZeEE,f(e)>O c(e), is
minimized.

It is known that the MECF problem is NP-hard [6]. Krumke et al. [10] have
provided an F-approximation algorithm for the MECF problem. We use their
technique to obtain a (k — 1)-approximation algorithm for MSE. The following
lemma provides the ingredient.

G el

Fig. 3. Transforming an edge in MSE to two edges in MECF.

Lemma 4. MSE can be reduced to MECF.

Proof. We transform each instance of MSE on a graph G = (V, E) to an instance
of MECF on a graph G’ = (V', E’). The transformation is as follows. We set
V' = V, and for every edge e € F, we add two edges e; and ey to E’ with
u(er) =1, c(er) =0, u(ez) = k — 1 and c(e1) = 1 (see Figure 3). Any solution
of cost £ for MECF on G’ corresponds to k = F paths in G with £ shared edges.
To see this, consider the set of edges that have positive flow and cost 1 in a
solution for MECF on G’. The corresponding edges in G are exactly those who
are shared in a solution for MSE. Conversely, any solution of size ¢ for MSE on
G corresponds to a solution of cost ¢ for MECF on G'. a

By Lemma 4, any a-approximation algorithm for MECF immediately gives
an a-approximation for MSE. In the following, we provide an approximation
algorithm for instances of MECF with maximum edge capacities k — 1. Our
algorithm is based on the solution for a well-known related problem, called
Minimum-Cost Flow, defined as follows:

Problem 5 (Minimum-Cost Flow (MCF)). Given a graph G = (V,E) with a
capacity u(e) € ZT and a cost c(e) € Zg associated to each edge e € E, find an
integral flow f of value F' from a source node s to a destination node ¢ such that

> eer c(e) f(e) is minimized.

Let G’ = (V', E’) be a graph obtained from G using Lemma 4. We construct
a graph G” from G’ by replacing the cost of each edge e in G” by c(e)/u(e)
(the capacities of the edges remain the same). Let OPT’ be the cost of an optimal
solution to the MECF problem on G’, and OPT” be the cost of an optimal solution
to the MCF problem on G”. Let f be an integral flow that realizes an optimal
cost OPT” on G”. Since capacities of the edges are the same in G’ and G, f is a
valid flow in G’ as well. Let ET = {e € E’ : f(e) > 0}. Then, using an argument
similar to what is used in [10] we get

OPT = Z cle) = Z u(e)z((z)

ecEt+ ecEt+
c(e)

<k-1 Y 29
220

~—

<k-1)> @f(e) = (k—1)0PT",

eck’ u(e>

where the first inequality holds because the capacity of the edges are at most
k — 1 by our construction of G’ in Lemma 4, and the second inequality holds
because f(e) > 1 for all edges in ET. Now, if OPT is the cost of an optimal
solution to MSE on G, combined with Lemma 4 we get

OPT = OPT’ < (k — 1)0PT”.

Therefore, any optimal algorithm for MCF yields a (k — 1)-approximation algo-
rithm for MSE. There are a number of efficient algorithms for the MCF problem.
The best one for our setting is an algorithm due to Ahuja et al. [1] that runs in
O(nmlog(nC)loglogU) time, where n, m, C, and U are the number of nodes,
number of edges, maximum edge cost, and maximum edge capacity, respectively.
Since in our transformation C' =1 and U = k — 1, we get the following result.

Theorem 6. There is a (k — 1)-approximation algorithm for the MSE problem
that runs in O(nmlognloglogk) time.

On series-parallel graphs, a fully polynomial time approximation scheme is
given for the MECF problem in [10]. It leads to a (14-¢)-approximation algorithm
for the MSE problem on series-parallel graphs, with a running time of O(m?(1+

1/¢e)logk).

Remark The MECF problem is listed in Garey and Johnson’s book ([6], Problem
[ND32]) as an NP-complete problem, leaving the proof to an unpublished work
by Even and Johnson. As a by-product, Theorem 2 and Lemma 4 together
provide a simple proof for the NP-completeness of MECF.

4 Inapproximability Result

In the previous section, we provided a (k — 1)-approximation algorithm for the
MSE problem. It is natural to ask if this is the best approximation factor one
can achieve. In this section, we prove a lower bound on the approximability of
the problem. The proof is based on the following theorem from [5] (here, n refers
to the number of nodes in the input graph).

Theorem 7 (Even et al. [5]). The MECF problem with uniform edge-costs
does not admit a 21°8" " _ratio approximation, for any constant € > 0, unless
NP C DTIME(nP°Y°8™), This hardness holds even if only two edge capacity
values are allowed, namely, u(e) € {1, poly(n)}, for every e.

We establish an analogous hardness result for our problem, using an approxi-
mation preserving reduction from MECF with uniform edge-costs to MSE. The
reduction is provided below.

cle)=1 SN

u(e) >0 Lo N
O——0 = Jug: P—0
T) T\ T Y

\. /
G ed

Fig. 4. Conversion of an edge in MECF with uniform edge-costs to an edge component
in MSE. Dashed lines represent chains of length |E| + 1.

‘ —-=» : chain of length |E| + 1 ‘

“ 0

G=(V,E) G'= (V' E)

Fig. 5. Reduction from MECF with uniform edge-costs to MSE.

Theorem 8. The MSE problem admits no 218" n_ratio approximation, for any
e > 0, unless NP C DTIME(nPe¥losn),

Proof. Let P be the problem of finding a (s,t)-flow f of value F' and cost C on
a graph G = (V, E) (see Problem 3). Each edge e € E is associated with an
integer capacity u(e) € {1, poly(n)} and a uniform cost c¢(e) = 1. We construct
a graph G’ = (V/,E') from G = (V, E) as follows. For each node x € V we
insert a corresponding node x in V’. For each edge e = (z,y) € E, we add an
“edge component” between x and y in G’, as depicted in Figure 4. Each edge
component is composed of u(e) parallel chains from x to a newly-added node 2,
and a directed edge from z’ to y. Each chain is composed of | E|+1 directed edges.
We denote the edge component corresponding to an edge (z,y) by (z,2’,y), and
refer to chains connecting = to =’ as type-1 chains. Additionally, we add two
nodes s’ and ', and connect s’ to s and ¢ to t’ with F chains. We call these
chains type-2 chains. Finally, we add for each edge component (z,z’,y), a chain
from s’ to ' and a chain from y to ¢'. We refer to these chains as type-3 chains.
The resulting graph is illustrated in Figure 5.

Let P’ be the problem of finding k = |E| + F (¢,t')-paths in G’ = (V', E')
with S < |E| shared edges. We show that solutions to P and P’ are in one-to-one
correspondence. First, we show that every solution to P’ is a solution to P. A
solution to P’ is a set P of k (s',¢')-paths in G’ with S < |E| shared edges.
Observe that none of the chains in G’ can be on more than one path of P,

otherwise, the number of shared edges exceeds | E|. Since the out-degree of s’ in
G’ is k = |E| + F, each chain incident to s’ must be on exactly one path of P.
Similarly, each chain incident to ¢’ is on exactly one path of P. Therefore, each
edge (2/,y) of an edge component (z,z’,y) of G’ is used in at least one path
of P. Moreover, the only edges that can be shared among paths of P are these
(2, y) edges.

Now, view P as a flow [’ of value |E|+F from s’ to t'. We convert f’ to a flow
of value F' in G as follows. First, for each path p of the form s’ --» 2’ — y --» ¢/,
where --+ represents a chain, we remove a flow of value 1 along p from f’.
After this step, f’ has value F, and each type-3 chain has flow zero. Thus, we
can remove type-3 chains from the graph. For each edge component (z,z’,y)
corresponding to an edge e of E, the remaining flow on (2’,y) is at most u(e).
Since the whole flow of ' now comes from z and continues to ¥, we can contract
type-1 chains in between, and replace the edge component (z,’,y) by a single
edge (z,y) of capacity u(e), carrying the same amount of flow previously carried
by («’,y). Similarly, we can contract type-2 chains and merge s’ to s and ¢’ to
t. The resulting graph is isomorphic to G, and the new flow f’ corresponds to
a feasible (s,t)-flow of value F' in G. Observe that edges having positive flow in
the new [’ are exactly those edges having flow greater than 1 in the original f,
and thus correspond to edges shared in P. As the cost of each corresponding
edge in G is one, the total cost of flow f’ is equal to the number of shared edges,
namely C' = S.

By reversing the above process, we can show that every solution to P is
also a solution to P’. Therefore, the one-to-one correspondence follows. The
constructed graph G’ has size O(|V'| + |E|(F +)_ . u(e))). Recall that u(e) €
{1, poly(n)}. Moreover, F' < |V|? in the construction used in [5]. The reduction
is thus polynomial, and the theorem statement follows. a

The lower bound proved in Theorem 8 is stated in terms of n. Since k is
unbounded in the original definition of MSE, we cannot directly use the above
theorem to get a lower bound in terms of k. The following lemma, however,
enables us to bound the value of k, and get an analogous lower bound.

Lemma 9. If k > |E|, then the minimum number of shared edges is equal to
the size of the shortest (s,t)-path.

Proof. Tt is easy to see that in any set of k paths, for k& > |E|, there is a path
whose all edges are shared. Because, otherwise, each path needs to have at least
one edge different from other paths, requiring more than |E| edges, which is
impossible. a

Lemma 9 implies that the MSE problem is polynomially solvable on instances
with k& > |E|. Therefore, we can simply assume that k < |E| = O(n?). Theorem 8
thus implies a lower bound of 2108 “k on the approximability of MSE.

5 Heuristic Improvements

In this section, we discuss some heuristics for improving the quality of the (k —
1)-approximation algorithm described in Section 3. Experimental results from
implementing the heuristics are also presented and compared.

5.1 Successive Cost Update

The approximation algorithm described in Section 3 is based on running a
minimum-cost flow (MCF) algorithm, and returning the obtained flow as a
(k — 1)-approximation to MECF, which in turn, gives a (k — 1)-approximation
to MSE.

The MCF algorithm receives a transformed graph in which each edge has a
cost in the set {0,1/(k — 1)}. When it comes to using an edge of cost 1/(k — 1),
the additive cost of selecting an edge which is not sending any flow is the same
as that of an edge that is currently sending a positive flow. Given that a positive
flow on an edge of cost 1/(k — 1) corresponds to a shared edge in the original
graph G, it follows that in the (k — 1)-approximation algorithm, there is no
preference in reusing a previously shared edge rather than sharing a fresh edge.
Our first heuristic attempts to force the approximation algorithm to reuse edges
previously used in the solution.

We implement this heuristic by an iterative cost update method. To encour-
age the MCF algorithm to reuse a previously shared edge, we select at each
iteration an edge with maximum flow among edges that have positive cost, up-
date the cost of that edge to zero, and re-run the MCF algorithm. It is easy to
observe that this cost update operation does not affect the approximation factor
of the algorithm. Details of the heuristic are provided in Algorithm 1.

Algorithm 1 MSE-APPROX(G, k, s,1)

1: construct G’ from G using Lemma 4

2: obtain Gy from G’ by updating the cost of each edge e to c(e)/u(e)

3: compute a minimum-cost (s,t)-flow f of value k in Go

4: set 1 =0

5: while cost of f # 0 do

6 find an edge e with a maximum flow among positive-cost edges in G;
7 obtain G;41 from G; by updating the cost of e to zero

8 compute a minimum-cost (s,t)-flow f of value k in Gi4+1

9 1+ 1+1

10: return ¢

5.2 Shortest Path Bound

The second heuristic is based on the fact that the minimum number of shared
edges in the MSE problem is bounded from above by the number of edges in a
shortest path from s to t. Let p be the size of a shortest (s, t)-path. If a feasible
solution to MSE consisting of k (s,t)-paths uses more than p edges, we can
reroute all k paths through a shortest path, and reduce the number of shared
edges to p. We use this tweak on top of Algorithm 1 to obtain the second heuristic
as shown in Algorithm 2.

Algorithm 2 MSE-APPROX2(G, k, s,t)

1: let r = MSE-APPROX(G, k, s, t)
2: let p = size of a shortest (s, t)-path in G

3: return min(r,p)

5.3 Random Heuristics

Uniform Random In the first heuristic algorithm (Algorithm 1) we select an
edge with a maximum flow at each iteration, and update its cost to encourage
the MCF algorithm to reuse that edge in the next round. One can easily see
that this greedy choice might not be necessarily the best. In our first random
heuristic, we turn Algorithm 1 to a random one by changing line 6 as follow:

6: pick an edge e uniformly at random form positive-cost edges in G;

Weighted Random In this heuristic, we use a weighted random approach for
the edge selection criteria. Here, to each edge e, we assign a weight w(e) equal
to the number of times e is used in (s, t)-paths (i.e., the current value of f(e) in
Algorithm 1). Let W be the sum of the weights of all edges. As opposed to the
first random heuristic, at each iteration of the algorithm, we pick an edge e at
random with probability w(e)/W. Therefore, edges used in more (s, t)-paths are
more likely to be selected.

Repeated Weighted Random The last random heuristic is the Repeated
Weighted Random heuristic, in which, we run the Weighted Random heuristic
multiple times and report the minimum as the number of shared edges.

5.4 Experimental Results

We implemented the (k — 1)-approximation algorithm described in Section 3 as
well as the five heuristics described in this section. We evaluated our code on
two families of graphs: road networks for large cities, and networks produced by
benchmark graph generators. Figures 6 and 7 summarize the results of running
our code on the two sample graphs: a road network for the city of Rome!, and

! The graph is available at: http://www.dis.uniromal.it/~challenge9/data/rome/rome99.gr

10

200

T T T
—— (k-1)-approximation
successive cost update

180 [-oeeeeee shortest path
random
--=== weighted random
160 | -oeeeen repeated weighted random b

140

120

100

80 -

Number of Shared Edges

60

40 +

20

L L L L
0 5 10 15 20 25 30 35 40 45 50

Number of Paths (k)
k|(k — 1)-|successivgshortest [random |weighted |[repeated
approx |cost up-|path random |weighted
date random
1 0.0 0.0 0.0 0.0 0.0 0.0
2 (0.6 0.6 0.6 0.6 0.6 0.6
31.6 1.6 1.6 1.6 1.6 1.6
413.57 3.31 3.31 3.28 3.31 3.19
5 |5.44 4.81 4.81 5.1 4.88 4.73
6 |7.77 6.72 6.72 7.24 6.77 6.35
7 (10.11 8.43 8.43 9.44 8.59 7.95
8 [12.61 10.16 10.16 11.7 10.34 9.57
9 (15.5 12.05 12.05 14.66 12.37 11.32
10/18.43 14.09 14.09 16.97 14.5 13.14
11]21.58 16.21 16.21 19.94 16.62 15.19
12{25.1 18.17 18.04 22.95 18.92 17.11
13(28.79 20.47 20.01 26.37 21.3 19.1
14132.88 22.12 21.39 29.48 23.4 21.45
15(37.39 23.93 22.55 33.75 25.61 23.22

Fig. 6. Empirical results for the road network of Rome.

a random directed graph from DARPA HPCS SSCA#2 graph theory bench-
mark [2]2. A SSCA#2 graph is a representative of computations in the field
of national security, scientific computing, and computational biology. Both test
graphs have 3350 nodes and 8870 edges.

The algorithms are run for £ = 1 to 50, and the average number of shared
edges are reported for 100 randomly-picked pairs of source and destination nodes.
To force random pairs to be far enough, we discarded pairs of source and desti-
nation nodes that were less than \/n/4 edges apart, for n being the number of
nodes. We used High Performance Computing Virtual Laboratory (HPCVL)’s

2 The generator is available at: https://sdm.1bl.gov/~kamesh/software/GTgraph/

11

90

T T
—— (k-1)-approximation
successive cost update
80 | et shortest path
random
--=== weighted random
70 F repeated weighted randol

60

50

40 +

30

Number of Shared Edges

20

10

L
0 5 10 15 20 25 30

Number of Paths (k)
k|(k — 1)-|successivgshortest [random |weighted |[repeated
approx |cost up-|path random |weighted
date random
0.0 0.0 0.0 0.0 0.0 0.0

2.01 2.01 2.01 2.01 2.01 2.01
5.75 5.75 5.75 5.75 5.75 5.75
13.83 13.3 13.3 13.34 13.25 12.97
22.08 20.18 20.18 21.07 20.54 19.85
31.55 27.45 27.44 29.5 28.0 26.71
40.82 32.43 31.42 36.77 33.83 31.79
48.61 35.63 33.08 43.69 37.03 34.88
55.75 36.51 33.78 47.94 38.7 36.2
61.14 37.01 33.88 50.56 39.2 36.81

© 00 3O Ui Wi+

—_
o

Fig. 7. Empirical results for a SSCA benchmark graph.

Beowulf Cluster® that has 64 nodes of 4x2.2 GHz Opteron Cores with 8 GB
RAM for running the experiments in parallel.

As can be seen in Figures 6 and 7, our heuristics perform significantly better
compared to the original (k — 1)-approximation algorithm. (For the sake of clear
comparison, numerical data is provided for smaller values of k.) For large enough
values of k, we get an improvement of 50% to 85% in the number of shared edges
in these two graphs. The second heuristic performs better than the first one for
some range of k. However, the two heuristics eventually converge for k sufficiently
large. The reason for this convergence is that when the number of paths, k, is
large, it is more likely for the edges on shortest paths to be shared in more paths,
and thus, be selected by Algorithm 1 for cost update. For smaller values of k,
the Repeated Weighted Random heuristic gives better results compared to other
heuristics. The results shown here are for 10 repetitions. Better results can be
obtained by increasing the number of repetitions.

3 The information is available at: http://www.hpcvl.org/hpc-env-beowulf-cluster.html

12

6 Conclusions

In this paper, we studied the complexity of the minimum shared edges problem,
and showed that the problem admits no 2108’ “k_factor approximation, for any
constant € > 0. Moreover, we presented a (k — 1)-approximation algorithm for
the problem, and proposed some heuristics to improve it in practice. Heuristics
presented in Section 5 (except the second one), can be indeed used as a practical
algorithm for the MECF problem.

Whether or not the minimum shared edges problem is NP-complete, for small
values of k (e.g., 3,4, ...), remains a topic for future investigation. An interesting
open problem is to see if an algorithm with an approximation ratio better than
k — 1 exists for the minimum shared edges problem. Although our lower bound
in Section 4 eliminates the possibility of having a poly-logarithmic approxima-
tion factor, we have not ruled out the possibility of having an approximation
factor of O(n), for a constant ¢ < 1. (For example, see [4] for two variants
of the Label Cover problem for which the same hardness of olog' ~“n holds, yet
they admit a O(n'/3)-factor approximation.) Improving the lower bound on the
approximability is another open problem.

Acknowledgments The authors would like to thank Anil Maheshwari and
Peter Widmayer for helpful discussions.

References

1. R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-cost
flows by double scaling. Mathematical Programming, 53(1):243-266, 1992.

2. D. Bader and K. Madduri. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In Proc. 12th Internat. Conf. High
Perform. Comput., volume 3769 of Lecture Notes Comput. Sci., pages 465-476.
2005.

3. D. A. Castanon. Efficient algorithms for finding the k£ best paths through a trellis.
IEEE Trans. Aerospace and Electronic Systems, 26(2):405-410, 1990.

4. M. Charikar, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms
for label cover problems. In Proc. 17th Annu. European Sympos. Algorithms, vol-
ume 5757 of Lecture Notes Comput. Sci., pages 23—-34. 2009.

5. G. Even, G. Kortsarz, and W. Slany. On network design problems: fixed cost flows
and the covering steiner problem. ACM Trans. Algorithms, 1(1):74-101, 2005.

6. M. Garey and D. S. Johnson. Computers and intractability : A guide to the theory
of NP-completeness. W. H. Freeman, 1979.

7. A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783-797, 1998.

8. A. Itai, Y. Perl, and Y. Shiloach. The complexity of finding maximum disjoint
paths with length constraints. Networks, 12(3):277-286, 1982.

9. Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs. Discrete
Optimization, 7(4):234-245, 2010.

10. S. O. Krumke, H. Noltemeier, S. Schwarz, H.-C. Wirth, and R. Ravi. Flow im-
provement and network flows with fixed costs. In Proc. Internat. Conf. Oper. Res.:
OR-98, pages 158-167, 1998.

13

11.

12.

13.

14.

15.

16.

17.

S.-W. Lee and C.-S. Wu. A k-best paths algorithm for highly reliable communica-
tion networks. IEICE Trans. Commun., E82-B(4):586-590, 1999.

C. Li, S. T. McCormick, and D. Simchi-Levi. Finding disjoint paths with different
path-costs: Complexity and algorithms. Networks, 22(7):653-667, 1992.

C. Li, T. S. McCormick, and D. Simich-Levi. The complexity of finding two disjoint
paths with min-max objective function. Discrete Appl. Math., 26(1):105-115, 1989.
S. D. Nikolopoulos, A. Pitsillides, and D. Tipper. Addressing network survivability
issues by finding the k-best paths through a trellis graph. In Proc. 16th IEEE
Internat. Conf. Comput. Commun., pages 370-377, 1997.

J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of
disjoint paths. Networks, 14(2):325-336, 1984.

D. Xu, Y. Chen, Y. Xiong, C. Qiao, and X. He. On the complexity of and al-
gorithms for finding the shortest path with a disjoint counterpart. IEEE/ACM
Trans. Networking, 14(1):147-158, 2006.

S. Q. Zheng, B. Yang, M. Yang, and J. Wang. Finding minimum-cost paths with
minimum sharability. In Proc. 26th IEEE Internat. Conf. Comput. Commun.,
pages 1532-1540, 2007.

14

