
On the Complexity of Finding an Unknown Cut

Via Vertex Queries

Peyman Afshani, Ehsan Chiniforooshan, Reza Dorrigiv, Arash Farzan,
Mehdi Mirzazadeh, Narges Simjour, and Hamid Zarrabi-Zadeh

School of Computer Science, University of Waterloo
Waterloo, Ontario, N2L 3G1, Canada

Email: {pafshani,echinifo,rdorrigiv,afarzan,
mmirzaza,nsimjour,hzarrabi}@cs.uwaterloo.ca

Abstract. We investigate the problem of finding an unknown cut through
querying vertices of a graph G. Our complexity measure is the number
of submitted queries. To avoid some worst cases, we make a few assump-
tions which allow us to obtain an algorithm with the worst case query
complexity of O(k) + 2k log n

k
in which k is the number of vertices ad-

jacent to cut-edges. We also provide a matching lowerbound and then
prove if G is a tree our algorithm can asymptotically achieve the informa-
tion theoretic lowerbound on the query complexity. Finally, we show it
is possible to remove our extra assumptions but achieve an approximate
solution.

1 Introduction

Consider a graph G together with a partition of its set of vertices, V (G), into
two sets, A and B. Here, we study the problem of finding the sets A and B by
only asking queries about the vertices of G. In other words, the algorithm has
only access to the graph G and an oracle which given a vertex v will tell the
algorithm whether v ∈ A or v ∈ B. Although we study this problem from a
theoretical point of view, we can establish connections to the existing concepts
and problems studied in machine learning.

In the standard learning problems, the learner is given a collection of labeled
data items, which is called the training data. The learner is required to find a “hy-
pothesis”, using the training data and thus predict the labels of all (or most of)
the data items, even those not seen by the learner algorithm. In this context, la-
beling the data points is considered to be an expensive operation. Thus, reducing
the size of the training data is one of the important objectives. Semi-supervised
learning attempts to accomplish this by using additional information about the
whole data set. Recently, new models for semi-supervised learning have emerged
which use spectral or graph techniques. We can name the work of Blum et al. [1],
in which they built a graph and proposed several strategies to weigh the edges
of the graph and proved finding a minimum cut corresponds to several of the

previously employed learning algorithms based on Random Markov Fields. This
is supported by the fact that it is common to restrict the set of possible labels
to {+,−} [7] which implies a cut in graph G. We need to mention that spectral
clustering techniques (for instance [9, 8]) which are closely related to cuts have
also been used in context of learning (for instance see [3, 5]). We refer the reader
to a line of papers in this area [1, 10, 4, 2].

Other concepts related to the problem studied here are Query learning and
active learning. Basically, under these assumptions the learner algorithm is al-
lowed to interactively ask for the label of any data item. Thus, we can claim
the problem studied in this paper has strong connection to the existing topics
in machine learning; in short, our problem can be described as actively learning
an unknown cut in a graph G.

In the next section, we define the problem precisely and obtain a simple lower
bound on the number of queries. Then, in Section 3 we develop an algorithm
that can solve a stronger version of our problem. We prove that the number
of queries needed by our algorithm matches the lower bound. We discuss the
problem for trees as a special family of graphs in Section 4. Finally, we relax the
balancedness assumption and develop an ǫ-approximation algorithm instead of
an exact algorithm in Section 5.

2 Preliminaries

Given a graph G, here we choose to represent the cut using a labeling l : V (G) →
{+,−} which is the assignment of + or − to the vertices of G. Our goal is to
design an algorithm which through querying labels of vertices can detect all the
cut-edges. Clearly, the challenge is to minimize the number of queries or other-
wise n queries can trivially solve the problem. Thus, we measure the complexity
of the problem by the number of submitted queries and the parameters involved
are the number of vertices, n, number of edges in the cut, k, and number of
vertices adjacent to cut-edges, k′.

Notice that if graph G is a k-regular graph and all the vertices except one
vertex v are labeled +, then it is easy to see that the algorithm must perform
n queries in the worst case to find the single vertex v. This (the unbalanced cut
having undesirable properties) is a common phenomenon which also appears in
the spectral and clustering techniques. For instance, the definitions of normalized
cut and ratio cut both factor in a form of balancedness condition. Here, we
require a different form of balancedness: suppose we remove all the cut-edges in
the graph. We call a labeling of a graph α-balanced, if each connected component
in the new graph has at least αn vertices. Now we formally define our first
problem:

Definition 1 (Problem A). Suppose a graph G with an unknown α-balanced

labeling of cut-size k is given. Use the structure of G together with the value of

α to find this labeling using a small number of queries.

Now, we show how to reduce the above problem to a seemingly easier problem
by a probabilistic reduction. For a cut C, define G \ C as the graph constructed
from G by deleting all cut-edges of C. Given a graph G, a hint-set is a set S of
vertices of G such that S has at least one vertex from each connected component
of G \ C.

Definition 2 (Problem B). Given an input graph G and a hint-set for an

unknown labeling of G, find the labeling using a small number of queries.

To show that Problem A can be reduced to Problem B, we select c log n
α

vertices uniformly at random and query the labels of the selected vertices. Since
a connected component C contains at least αn vertices, the probability that a
randomly selected vertex is not in C is at most 1 − α. Hence, the probability
that all selected vertices fall outside C is at most

(1 − α)
c log n

α ≤ ((1 − α)
1
α)c log n ≤ (

1

n
)c

The number of connected components is α−1 thus, with high probability we have
obtained a hint-set and reduced the Problem A to Problem B.

In addition to this probabilistic reduction, a non-probabilistic one, though
with an exponential running time, can also be proposed for the situation in
which an upper bound k on the number of cut-edges of the labeling is given.
As follows from a theorem proved by Kleinberg [6], for any graph G, parameter

α, and integer k < α2

20 |V (G)|, any subset of size O(1
α log 2

α), with probability at
least 1

2 , is a hint-set for all α-balanced cuts of G with at most k cut-edges. So,
we may examine each subset of vertices of G against every α-balanced cut of G
with at most k cut-edges to find a subset that is a hint-set for all possible input
labellings; then we will have an equivalent instance of problem B.

2.1 The Lower Bound

The balancedness condition prevents the problem from having a huge and trivial
lowerbound. The idea behind our lowerbound is to construct a large number of
balanced cuts on a fixed hint-set S.

αn
k (1 − 2α)n

k

k

+ −

αn
k

Fig. 1. Construction of the lowerbound.

Lemma 1. Treating α as a constant, any algorithm that solves Problem A or B

needs k log n
k − O(k) queries in the worst case, where n is the size of the graph

and k is the cut-size of the labeling.

Proof. Let G consist of k paths, each of length n/k, connected to each other
through their endpoints as depicted in Figure 1. Suppose that the vertices in the
first (respectively, the last) α portion of each path are labeled with + (respec-
tively, with −). The cut we are looking for is formed by k edges from the middle

(1 − 2α) portion of the paths, one from each path. There are
(

(1 − 2α)(n
k)

)k

choices for selecting these edges. Thus, any algorithm for finding the cut in this
graph needs log((1 − 2α)n

k)k = k log n
k − O(k) queries in the worst case. ⊓⊔

3 An Optimal Algorithm

First we examine a very special case in which the graph G is a path and the cut
is a single edge. This special case will come handy in the solution for the general
case.

3.1 Algorithm for Paths with Cut-size One

In this case the cut essentially is just one edge and all vertices to one side of it
are all labeled + and the vertices on the other side are all labeled −. The solution
is direct and is similar to the binary search algorithm. We start from both ends
and query the labels of the endpoints. These will have opposite labels. Then we
query the label of the midpoint and depending on the answer our search will be
confided to one side of the path. We continue this binary search which eventually
will find the cut using O(log n) queries.

Notice this binary search approach can still be used to find a cut-edge pro-
vided we start from two vertices with opposite labels.

3.2 Algorithm for Balanced Cuts

In this section, we develop an algorithm which matches the lowerbound proved in
Section 2.1. We also focus on Problem B and assume a hint set S = {v1, . . . , vc}
is given. First, the algorithm uses c queries to find out labels of vertices in S. It
then computes a sequence G0 = G, G1, . . . , Gk = G\C of subgraphs of G where,
for 1 ≤ i ≤ k, Gi = Gi−1−ei for a cut-edge ei of C. To find a cut-edge ei in Gi−1,
it selects vertices u and v of S that are in the same connected component of Gi

but have different labels. Then a “binary search” on a path between u and v in
Gi is used to find a cut-edge. If computed naively, this path can have Ω(n) nodes,
causing the algorithm to perform too many queries (Ω(log n) in the worst case)
at each step. Thus this naive approach will only result in the bound O(k log n).
Although this bound of O(k log n) seems efficient, it still does not match the
lowerbound in the previous section. To obtain a matching upperbound, we need
one last ingredient: “domination sets” of Gi.

Definition 3. In a connected graph G, a set of vertices R is an r-domination
set, if the distance of any vertex in G to the set R is at most r. We use f(r) to

denote the size of an r-domination set with the least number of vertices among

all r-domination sets of G.

The next two lemma shows how domination sets are used to find a path of length
at most 2r + 1 connecting two vertices with different labels in Gi−1.

Lemma 2. Given a graph G and an r-domination set R of G, for every two

vertices u and v of the same connected component of G, one can construct a

walk W from u to v such that every 2r + 1 consecutive vertices in W contain at

least one vertex from R.

Proof. Let P = (u = p1, p2, . . . , pl = v) be an arbitrary path between u and
v in G. Since R is an r-domination, for each vertex pi ∈ P there is a vertex
ri ∈ R such that there is a path Pi of length at most r connecting pi to ri.
We define P ′

i to be the reverse of Pi, for all 1 ≤ i ≤ l, and W to be the
walk (P1, P

′

1, P2, P
′

2, . . . , Pl, P
′

l). Intuitively, the walk W starts walking along the
vertices in P and at each vertex pi, it first goes to ri and then returns to pi. So,
each segment of size 2r + 1 of W contains at least one vertex from R. ⊓⊔

Lemma 3. Suppose l is a labeling of a graph G, R is an r-domination set in

G, and u1 and u2 are vertices with l(u1) 6= l(u2). There are vertices v1 and v2

of distance at most 2r + 1 in R ∪ {u1, u2} such that l(v1) 6= l(v2).

Proof. Consider the walk W form u1 to u2 described in Lemma 2 and let
r1, r2, . . ., rp be the vertices of R appearing in W in order from u1 to u2. Also,
define r0 = u1 and rp+1 = u2. By Lemma 2, there are at most 2r vertices in
W between ri and ri+1, exclusive, for 0 ≤ i ≤ p. Since l(r0) 6= l(rp+1), there is
an 0 ≤ i ≤ p such that l(ri) 6= l(ri+1). The correctness of the lemma follows by
setting v1 = ri and v2 = ri+1. ⊓⊔

Our algorithm will use the above two lemmas to iteratively find and extract
the cut edges. Since at each step of the algorithm we will remove a cut edge, we
must be able to update the r-domination set under edge deletions. Furtunately,
this can be done trivially as the next lemma shows. We omit the prove since the
proof is mostly intuitive.

Lemma 4. If R is an r-domination set in G and uv ∈ E, then R′ = R∪ {u, v}
is an r-domination set in G′ = G − uv.

The following property of r-domination sets allow the algorithm to asymp-
totically achieve the query complexity of the existing lower bound.

Lemma 5. In any n-vertex connected graph, f(r) ≤ 2n/r.

Algorithm FindCutEdges(graph G, hint-set S, integers r and κ)

1. Find an r-domination set R for G using the greedy approach

2. Query labels of vertices in S and R

3. Set C = ∅

4. while there are u1, u2 in S in the same component of G with l(u1) 6= l(u2) do

5. Find a path P between two vertices v1 and v2 in R ∪ {u1, u2} with length
at most 2r + 1 such that l(v1) 6= l(v2)

6. Use binary search to find an edge e = wx of P such that l(w) 6= l(x)

7. Set C = C ∪ e, G = G − e, and R = R ∪ {w, x}

8. if |C| > κ then Fail;

9. Return C

Fig. 2. Algorithm for finding the cut-edges of an unknown labeling of a graph.

Proof. This upper bound can be achieved by a naive greedy algorithm. Start
with one vertex as the initial domination set R and progressively add vertices to
R in steps. In each step, find a vertex with distance more than r to R and add
it to R (if there is no such vertex, we are finished). We claim |R| ≤ 2n/r.

We define the d-neighborhood of a vertex u, denoted by Nu(d), as the set
of all vertices within distance d of u. If v and w are in the greedily-selected r-
domination set R, then Nv(r/2) and Nw(r/2) have an empty intersection. Hence,
there are |R| r

2 -neighborhoods formed around vertices of R that are pairwise
disjoint. Since, there are at least r/2 vertices (including v) in Nv(r/2), for any
vertex v, r|R|/2 is a lower bound on the number of vertices n. This immediately
implies that |R| ≤ 2n/r. ⊓⊔

The greedy algorithm above seems naive as it can be far from achieving the
optimal value of f(r). However we prove, in the next lemma, that the size of its
output can be upper bounded by the function f in some way.

Lemma 6. Suppose, on an input graph G, the greedy algorithm, as described in

Lemma 5, comes up with an r-domination set of size Greedy(r). Then,

f(r) ≤ Greedy(r) ≤ f(r/2).

Proof. It is obvious that f(r) ≤ Greedy(r), as f(r) is the minimum size of a dom-
ination set and Greedy(r) is the size one such set. To prove Greedy(r) ≤ f(r/2),
it is sufficient to consider the r

2 -neighborhoods formed around the selected ver-
tices in Lemma 5. For a set to be an eligible r

2 -domination set, it has to include at
least one vertex from each of these r

2 -neighborhoods; otherwise the center would
be at a distance more than r/2 from all the vertices in the domination set. Since
these neighborhoods are pairwise disjoint (see the proof of Lemma 5), the size of
any eligible r

2 -domination set must be at least the number of r
2 -neighborhoods

which is exactly Greedy(r). Hence, f(r/2) ≥ Greedy(r). ⊓⊔

Consider the algorithm shown in Figure 2. It accepts additional parameters r
and κ where κ is enforced to be an upper-bound on the cut-size. The algorithm

starts by constructing an r-domination set R of G. Then, it performs |R| + |S|
queries to find out the labels of the vertices in R and in S. The algorithm runs in
at most κ steps and in the i-th step it constructs the graph Gi. We use Gi, Ri,
and Ci, respectively, to denote values of variables G, R, and C at the beginning
of the i-th iteration of the while loop (i ≥ 0).

At the beginning of the iteration i, we have a partially computed cut Ci,
a graph Gi = G \ Ci, and an r-domination set Ri for Gi. Also, the algorithm
knows the labels of vertices in S and Ri. Next, it uses Lemma 3 to find a path
P of length at most 2r +1 between two vertices with different labels. Hence, the
algorithm uses at most ⌈log (2r + 1)⌉ queries to find a new cut-edge e in Gi. The
edge e is removed from the graph and the r-domination set is updated based on
Lemma 4. If κ ≥ k, removing all edges of C one by one in this way, the algorithm
finds the solution using |S| + Greedy(r) + κ log r queries. The algorithm fails,
when κ < k, before submitting more than |S| + Greedy(r) + κ log r queries.

Notice that we can compute Greedy(r) for different values of r in advance
and choose the value which minimizes the query complexity. Then, the number
of queries will be at most |S| + O(κ) + minr{Greedy(r) + κ log r} which is at
most

|S| + O(κ) + min
r

{f(r/2) + κ log r} = |S| + O(κ) + min
r

{f(r) + κ log r}

according to Lemma 6.

Let U be the set of endpoints of all cut-edges. We can further reduce the
number of queries by noticing that every edge between a vertex u with positive
label and a vertex v with negative label must be a cut-edge. Once we remove
all such trivial cut-edges, the next step of the algorithm will find a new vertex
v ∈ U . This implies we can bound the number of steps by k′ = |U |. The final
theorem is as follows:

Theorem 1. For a graph G, a labeling l, and an integer κ, one can use |S| +
O(κ)+minr{f(r)+κ log r)} queries to discover if κ < k′ and to solve the problem

B when κ ≥ k′, where S is a hint-set for l.

According to Lemma 5, f(2n/κ) ≤ κ. Thus, if we run the algorithm of Theorem 1
with parameters κ = 1, κ = 2, κ = 4, . . . and r = 2n/κ, until κ becomes as large
as k′, we get the following theorem.

Corollary 1. For a graph G and a labeling l, the problem B can be solved using

|S| + O(k′) + 2k′ log n
k′

queries, where k′ is the number of vertices adjacent to

cut-edges and S is a hint-set for l.

Finally, we must mention that our probabilistic reduction of problem A to
problem B used c log n

α queries which is always asymptotically smaller than the
above query complexity and thus we can safely omit this term.

4 The Tightness of the Bounds

The result of the Corollary 1 is tight with respect to parameters n and k′.
However, for specific graphs better bounds might be possible. Note that given
a graph G and a hit-set S one available lowerbound is the logarithm of the
number of cuts for which S is the hint-set. Clearly, this number depends entirely
on the structure of graph G. Same can be said about the result of Theorem 1.
For instance, if G is a full binary tree then we have f(r) = θ(n

2r) which means
the query complexity of Theorem 1 is in fact κ log log n

κ + O(κ) with a matching
asymptotic lowerbound for this particular tree. In this section we generalize this
observation for all trees. In other words, we prove if G is a tree then the result
of Theorem 1 is asymptotically tight by providing a matching lowerbound which
entirely depends on the structure of G and thus throughout this section we
always assume G is a tree.

We use the output S of the greedy algorithm of Lemma 5 to construct many
of labellings for G, all with the same hint-set S. Consider an arbitrary r and
the r-domination set S returned by greedy algorithm. This special r-domination
set has the property that for every u, v ∈ S, dist(u, v) ≥ r + 1. We call any
r-domination set with this property a distributed r-domination set. For a vertex
v ∈ S let Nv be the ⌈ r

2⌉-neighborhood of v. If u 6= v, then the edge-sets of the
graphs induced by Nu and Nv do not intersect, that is, E(G[Nu])∩E(G[Nv]) = ∅.
Suppose v0, . . . vm−1 is an ordering of the vertices of S. We have assumed G is
a tree and thus there is a unique path connecting vi to vj . Define Pij to be the
portion of this path which falls inside Nvi

. We have |Pij | ≥ 1 + ⌈r/2⌉, for every
0 ≤ i < j ≤ m − 1. The fact that E(G[Nvi1

]) ∩ E(G[Nvi2
]) = ∅ implies that the

edge sets of the paths Pi1j1 and Pi2j2 do not intersect, for i1 6= i2. This results
in the following lemma.

Lemma 7. If S is a distributed r-domination set of size m in a tree G and

k < m be an arbitrary integer then, there are at least ⌈ r
2⌉

k
cuts each having k

cut-edges such that S is a hint-set for every one of them.

Proof. Consider the notation above and the following algorithm:

Set C = ∅
while |C| < k do

- Choose the lexicographically smallest pair (i, j), 0 ≤ i < j ≤ m− 1
such that vi and vj are in the same component of G \ C.

- Nondeterministically select an edge of Pij and add it to C

Since k ≤ m− 1, the selection of the pair (i, j) in each execution of the body
of the while loop is feasible. As each path Pij has ⌈ r

2⌉ edges and the body of
the while loop is executed k times, there are ⌈ r

2⌉
k possibilities, in overall, for

nondeterministic choices of the algorithm. Moreover, each time that an edge is
deleted from G \ C and a connected component of G \ C is split into two, each

new connected component still includes a vertex of S (either vi or vj). Therefore,
S is a hint-set for the cut specified by any set C generated by this algorithm.

It remains to show that all the ⌈ r
2⌉

k sets C generated by the algorithm
are distinct. Consider two different executions E1 and E2 of the algorithm and
consider the first point that the algorithm makes different decisions in E1 and
in E2. Suppose E1 chooses an edge e1 of Pij while E2 selects a different edge e2

of Pij . Without loss of generality, assume e1 appears before e2 in Pij . The edge
e2 is in ⌈ r

2⌉-neighborhood of vi and after adding e1 to C in E1, e2 is not in the
same component as vi anymore; so E1 will never add e2 to C. Thus, the value
of C in E2 will be different form the value of C in E1. So, each execution of the
algorithm generates a distinct set of edges. ⊓⊔

Next theorem uses this set of cuts to give a lowerbound.

Theorem 2. For every tree G with n vertices and integer k > 0, there is an

integer r such that any algorithm solving problem B must perform f(r)+k log r−
O(k) queries.

Proof. Due to the term −O(k), we can assume k ≤ n
2 . Define mt as the maximum

size of any distributed t-domination set. The size of the maximum independent
set of a tree is at least n

2 which implies m1 ≥ n
2 . As r increases, mr must decrease,

and in particular mn = 1. We know k ≤ ⌈ r
2⌉ and thus there is an integer t > 1

such that f(t + 1) ≤ mt+1 ≤ k < mt. According to Lemma 7 any algorithm
solving problem B must perform k log t

2 queries and a simple calculation shows
that f(t + 1) + k log(t + 1)−O(k) ≤ k log t which means f(r) + k log r −O(k) is
a lowerbound for the number of queries for r = t + 1. ⊓⊔

5 Relaxing the Balancedness Assumption

In this section we show how to remove the balancedness assumption at the ex-
pense of obtaining an approximation algorithm. Thus, we present an ε-approximation
algorithm that performs k ln(3/ε) + k log(n/k) + O(k) queries on a given graph
with n vertices and cut-size k and reports a labeling which with high probability
has at most εn vertices mislabeled.

The algorithm is fundamentally same as before. We select a random set of
vertices uniformly as the hint-set and perform Algorithm 2 just once for κ = k
and r = n/k. Nevertheless, the probabilistic analysis presented in Section 2 holds
no more; the connected components here can be arbitrarily small so there could
be components which do not contain any vertex from the hint set.

We call the components that have a vertex representative in the sample as
the represented components and the rest as the unrepresented. Firstly, we claim
that if we select (k + 1) ln(ε/3) sample vertices, with high probability, the num-
ber of vertices in an unrepresented component is at most εn. The argument is
probabilistic; we compute the expected number of vertices in unrepresented com-
ponents. We denote by n1, . . . , nt the sizes of connected components C1, . . . , Ct

in the initial graph respectively. Using basic probability arguments, the prob-

ability that the component Ci is unrepresented is at most
(

1 − ni

n

)(k+1) ln(ε/3)
.

Therefore, the expected total number of vertices in unrepresented components
is

EI =

t
∑

i=1

ni

(

1 −
ni

n

)(k+1) ln(ε/3)

≤ n

t
∑

i=1

ni

n
e−

ni

n
(k+1) ln(ε/3).

As the function xe−cx is convex for any fixed c, the maximum happens when ni

n

are equal and thus EI ≤ n
(

t 1
t e

−
1
t
(k+1) ln(ε/3)

)

≤ nε/3. The last inequality is due

to the fact that k cannot be less than t−1. By using Markov inequality, one can
assert that the probability that there are more than εn vertices in unreported
components is less than 1/3.

Secondly, we observe that by a run of Algorithm 2, labels of vertices of repre-
sented components are reported correctly. This fact follows from the correctness
of the algorithm, and the observation that it never reports an edge as a cut-edge
if it is not indeed a cut-edge. The algorithm might miss some cut-edges in con-
trast to the previous setting, as some components are unrepresented, and so the
labeling of such components can be reported arbitrarily.

Combining the two latter facts, we conclude that the total number of vertices
whose labels are misreported is less than εn for an arbitrary small ε < 1.

6 Conclusion

In this paper we studied the query learning problem, while we assumed both
labeled and unlabeled data were available to us and we had a similarity graph
constructed on data items. The problem was discussed in the following two
settings: We studied the case where we are given a hint set of vertices in which
there exists at least one vertex from each connected component of the same label.
We gave the lower bound k log n/k−O(k) on the number of queries required for
this case. We provided an algorithm that finds the optimal hypothesis using at
most O(k log n/k) queries, which matched our lower bound for general graphs.
Hence, our proposed algorithm is optimal in terms of the number of queries.

In the second setting, we showed that if the labeling is α-balanced, i.e. each
connected component of the vertices with the same label has at least α fraction
of all vertices, we could find a hint set with high probability using c log n

α random
queries. Note that our previous lower bound works for the α-balanced graphs,
too. This gives an evidence of the optimality of our algorithm for general graphs
in the latter setting.

Although our algorithm for the first setting was proved to be optimal for gen-
eral graphs, we may have different lower bounds for special families of graphs.
In Section 4, we investigated the problem for trees and proved for tree our algo-
rithm is asymptotically optimal. One natural question is whether it is possible
to extend this result to other classes of graphs or not.

Finally, we considered the problem for non-balance cuts. We developed an
ε-approximation algorithm for this case. However, we assumed that the number
of cut-edges is given to the algorithm. Thus, the following problem remained
open:

Open Problem: Suppose that G is a graph, l is a labeling of G with k cut-

edges, and 0 < ε ≤ 1 is a real number. Does there exist an ε-approximation algo-

rithm that runs in polynomial time and submits at most O(poly(1/ε)k log n/k)
queries without knowing k in advance?

References

1. A. Blum and S. Chawla. Learning from labeled and unlabeled data using graph
mincuts. In Proceedings of the Eighteenth International Conference on Machine

Learning, pages 19–26. Morgan Kaufmann Publishers Inc., 2001.
2. A. Blum, J. Lafferty, M. R. Rwebangira, and R. Reddy. Semi-supervised learning

using randomized mincuts. In Proceedings of the twenty-first international confer-

ence on Machine learning, page 13. ACM Press, 2004.
3. T. Joachims. Transductive learning via spectral graph partitioning. In Twentieth

International Conference on Machine Learning, 2003.
4. T. Joachims. Transductive learning via spectral graph partitioning. In Proceedings

of the International Conference on Machine Learning, pages 290–297, 2003.
5. S. Kamvar, D. Klein, and C. Manning. Spectral learning. In International Joint

Conference On Artificial Intelligence, 2003.
6. J. Kleinberg. Detecting a network failure. In Proceedings of the Forty-First An-

nual Symposium on Foundations of Computer Science, page 231. IEEE Computer
Society, 2000.

7. T. Mitchell. Machine Learning. McGraw Hill, 1997.
8. A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an algorithm.

In Advances in Neural Information Processing Systems, 2001.
9. Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. IEEE

Trans. Pattern Anal. Mach. Intell., 22(8):888–905, 2000.
10. X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-supervised learning using Gaus-

sian fields and harmonic functions. In Proceedings of the Twentieth International

Conference on Machine Learning, pages 912–919, 2003.

