
An Improved Algorithm for Online Unit
Clustering

Hamid Zarrabi-Zadeh Timothy M. Chan

School of Computer Science, University of Waterloo
Waterloo, Ontario, Canada, N2L 3G1
{hzarrabi,tmchan}@uwaterloo.ca

Abstract. We revisit the online unit clustering problem in one dimen-
sion which we recently introduced at WAOA’06: given a sequence of n
points on the line, the objective is to partition the points into a mini-
mum number of subsets, each enclosable by a unit interval. We present
a new randomized online algorithm that achieves expected competitive
ratio 11/6 against oblivious adversaries, improving the previous ratio of
15/8. This immediately leads to improved upper bounds for the problem
in two and higher dimensions as well.

1 Introduction

At WAOA’06 [1], we began investigating an online problem we call unit cluster-
ing , which is extremely simple to state but turns out to be nontrivial surprisingly:

Given a sequence of n points on the real line, assign points to clusters
so that each cluster is enclosable by a unit interval, with the objective
of minimizing the number of clusters used.

In the offline setting, variations of this problem frequently appear as textbook
exercises and can be solved in O(n log n) time by a simple greedy algorithm
(e.g., see [3]). The problem is equivalent to finding the minimum number of
points that stab a given collection of unit intervals (i.e., clique partitioning in unit
interval graphs, or coloring unit co-interval graphs), and to finding the maximum
number of disjoint intervals in a given collection (i.e., maximum independent set
in unit interval graphs). It is the one-dimensional analog of an often-studied and
important geometric clustering problem—covering a set of points in d dimensions
using a minimum number of unit disks (for example, under the Euclidean or L∞
metric) [5,6,8,11,12]. This geometric problem has applications in facility location,
map labeling, image processing, and other areas.

Online versions of clustering and facility location problems are natural to
consider because of practical considerations and have been extensively studied
in the literature [2,4,10]. Here, input points are given one by one as a sequence
over time, and each point should be assigned to a cluster upon its arrival. The
main constraint is that clustering decisions are irrevocable: once formed, clusters
cannot be removed or broken up.

For our one-dimensional problem, it is easy to come up with an algorithm
with competitive ratio 2; for example, we can use a näıve grid strategy: build
a uniform unit grid and simply place each arriving point in the cluster corre-
sponding to the point’s grid cell (for the analysis, just observe that every unit
interval intersects at most 2 cells). Alternatively, we can use the most obvious
greedy strategy: for each given point, open a new cluster only if the point does
not “fit” in any existing cluster; this strategy too has competitive ratio 2.

In the previous paper [1], we have shown that it is possible to obtain an
online algorithm with expected competitive ratio strictly less than 2 using ran-
domization; specifically, the ratio obtained is at most 15/8 = 1.875. This result
is a pleasant surprise, considering that ratio 2 is known to be tight (among both
deterministic and randomized algorithms) for the related online unit covering
problem [2,1] where the position of each enclosing unit interval is specified upon
its creation, and this position cannot be changed later. Ratio 2 is also known
to be tight among deterministic algorithms for the problem of online coloring of
(arbitrary rather than unit) co-interval graphs [7,9].

In this paper, we improve our previous result further and obtain a randomized
online algorithm for one-dimensional unit clustering with expected competitive
ratio at most 11/6 ≈ 1.8333. Automatically, this implies improved online algo-
rithms for geometric unit clustering under the L∞ metric, with ratio 11/3 in 2D,
for example.

The new algorithm is based on the approach from the previous paper but
incorporates several additional ideas. A key difference in the design of the algo-
rithm is to make more uses of randomization (the previous algorithm requires
only 2 random bits). The previous algorithm is based on a clever grid approach
where windows are formed from pairs of adjacent grid cells, and clusters cross-
ing two adjacent windows are “discouraged”; in the new algorithm, crossings of
adjacent windows are discouraged to a “lesser” extent, as controlled by random-
ization. This calls for other subtle changes in the algorithm, as well as a lengthier
case analysis that needs further technical innovations.

2 The New Randomized Algorithm

In this section, we present the new randomized algorithm for the online unit
clustering problem in one dimension. The competitive ratio of the algorithm is
not necessarily less than 2, but will become less than 2 when combined with the
näıve grid strategy as described in Section 5. Our new algorithm is based in part
on our previous randomized algorithm [1], although we will keep the presentation
self-contained. A key difference is to add an extra level of randomization.

Consider a uniform unit grid on the line, where each grid cell is a half-closed
interval of the form [i, i+1). To achieve competitive ratio better than 2, we have
to allow clusters to cross grid cells occasionally (for example, just consider the
input sequence

〈
1
2 , 3

2 , 5
2 , . . .

〉
, where the näıve grid strategy would require twice

as many clusters as the optimum). As in the previous algorithm, we accomplish
this by forming windows over the line each consisting of two grid cells and permit

clusters crossing two cells within a window. There are two ways to form windows
over the grid; we choose which according to an initial random bit. In the previous
algorithm, clusters crossing two adjacent windows are not strictly forbidden but
are discouraged in some sense.

In the new algorithm, the idea, roughly speaking, is to permit more clusters
crossing windows. More specifically, call the grid point lying between two adja-
cent windows a border ; generate a random bit for every border, where a 1 bit
indicates an open border and a 0 bit indicates a closed border. Clusters crossing
closed borders are still discouraged, but not clusters crossing open borders. (As
it turns out, setting the probability of border opening/closing to 1/2 is indeed
the best choice.)

The actual details of the algorithm are important and are carefully crafted. In
the pseudocode below, b(w, w′) refers to the border indicator between windows
w and w′. We say that a point lies in a cluster if inserting it to the cluster would
not increase the length of the cluster, where the length of a cluster refers to the
length of its smallest enclosing interval. We say that a point fits in a cluster if
inserting it to the cluster would not cause the length to exceed 1.

RandBorder Algorithm: Partition the line into windows each of the form
[2i, 2i+2). With probability 1/2, shift all windows one unit to the right. For each
two neighboring windows w and w′ set b(w, w′) to a randomly drawn number
from {0, 1}. For each new point p, find the window w containing p, and do the
following:

1: if p fits in a cluster intersecting w then
2: put p in the “closest” such cluster
3: else if p fits in a cluster u inside a neighboring window w′ then
4: if b(w,w′) = 1 then put p in u

5: else if w (completely) contains at least 1 cluster and
w′ (completely) contains at least 2 clusters

6: then put p in u

7: if p is not put in any cluster then open a new cluster for p

Thus, a cluster is allowed to cross the boundary of two grid cells within a
window freely, but it can cross the boundary of two adjacent windows only in
two exceptional cases: when the corresponding border indicator is set to 1, or
when the carefully specified condition in Line 5 arises (this condition is slightly
different from the one in the previous algorithm). We will see the rationale for
this condition during the analysis.

To see what the “closeness” exactly means in Line 2, we define the following
two preference rules:

– Rule I. If p lies in a cluster u, then u is the closest cluster to p.
– Rule II. If p lies in a cell c, then any cluster intersecting c is closer to p

than any cluster contained in a neighboring cell.

B1 B2

Fig. 1. Two blocks of sizes 2 and 3.

The first preference rule prevents clusters from overlapping each other, and the
second rule prevents clusters from unnecessarily crossing the boundary of two
neighboring cells. The above preference rules and exceptional cases will be vital
to the analysis.

Note that the random bits used for the border indicators can be easily gen-
erated on the fly as new borders are created.

3 Preliminaries for the Analysis

To prepare for the analysis, we first state a few definitions (borrowed from [1]).
Let σ be the input sequence. We denote by opt(σ) the optimal offline solution

obtained by the following greedy algorithm: sort all points in σ from left to
right; cover the leftmost point p and all points within unit distance to it by a
unit interval started at p; and repeat the procedure for the remaining uncovered
points. Obviously, the unit intervals obtained by this algorithm are disjoint.

We refer to a cluster as a crossing cluster if it intersects two adjacent grid
cells, or as a whole cluster if it is contained completely in a grid cell.

For any real interval x (e.g., a grid cell or a group of consecutive cells), the
cost of x denoted by µ(x) is defined to be the number of whole clusters contained
in x plus half the number of clusters crossing the boundaries of x, in the solution
produced by the RandBorder algorithm. We note that µ is additive, i.e., for two
adjacent intervals x and y, µ(x ∪ y) = µ(x) + µ(y).

A set of k consecutive grid cells containing k−1 intervals from opt(σ) is called
a block of size k (see Fig. 1). We define ρ(k) to be the expected competitive ratio
of the RandBorder algorithm within a block of size k. In other words, ρ(k)
upper-bounds the expected value of µ(B)/(k − 1) over all blocks B of size k.

In the following, a list of objects (e.g., grid cells or clusters) denoted by
〈xi, . . . , xj〉 is always implicitly assumed to be ordered from left to right on the
line. Moreover, p1 ¿ p2 denotes the fact that point p1 arrives before point p2 in
the input sequence.

We now establish some observations concerning the behavior of the Rand-
Border algorithm. Observations 1(ii) and (iii) are basically from [1] and have
similar proofs (which are reproduced here for completeness’ sake since the algo-
rithm has changed); the other observations and subsequent lemmas are new and
will be used multiple times in the analysis in the next section.

Observation 1

(i) Any interval in opt(σ) that does not cross a closed border can (completely)
contain at most one whole cluster.

(ii) Any grid cell c can contain at most one whole cluster. Thus, we always have
µ(c) ≤ 1 + 1

2 + 1
2 = 2.

(iii) If a grid cell c intersects a crossing cluster u1 and a whole cluster u2, then u2

must be opened after u1 has been opened, and after u1 has become a crossing
cluster.

Proof. (i) Let u1 and u2 be two whole clusters contained in the said interval and
suppose that u1 is opened before u2. Then all points of u2 would be assigned
to u1, because Lines 2 and 4 precede Line 7. (ii) holds by the same argument,
because Line 2 precedes Line 7.

For (iii), let p1 be the first point of u1 in c and p′1 be the first point of u1 in
a cell adjacent to c. Let p2 be the first point of u2. Among these three points,
p1 cannot be the last to arrive: otherwise, p1 would be assigned to the whole
cluster u2 instead of u1, because of Rule II. Furthermore, p′1 cannot be the last
to arrive: otherwise, p1 would be assigned to u2 instead. So, p2 must be the last
to arrive. ut
Observation 2 Let u1 be a whole cluster contained in a grid cell c, and let u2

and u3 be two clusters crossing the boundaries of c. Then

(i) u1 and u2 cannot be entirely contained in the same interval from opt(σ).
(ii) there are no two intervals I1 and I2 in opt(σ) such that u1∪u2∪u3 ⊆ I1∪I2.

Proof. (i) Suppose by way of contradiction that u1 and u2 are entirely contained
in an interval I from opt(σ). Then by Observation 1(iii), u1 is opened after u2

has become a crossing cluster, but then the points of u1 would be assigned to
u2 instead: a contradiction.

(ii) Suppose that u1∪u2∪u3 ⊆ I1∪ I2, where I1 and I2 are the two intervals
from opt(σ) intersecting c. We now proceed as in part (i). By Observation 1(iii),
u1 is opened after u2 and u3 have become crossing clusters, but then the points
of u1 would be assigned to u2 or u3 instead: a contradiction. ut
Lemma 1. Let B = 〈c1, . . . , ck〉 be a block of size k ≥ 2, and S be the set of
all odd-indexed (or even-indexed) cells in B. Then there exists a cell c ∈ S such
that µ(c) < 2.

Proof. Let 〈I1, . . . , Ik−1〉 be the k − 1 intervals from opt(σ) in B, where each
interval Ii intersects two cells ci and ci+1 (1 ≤ i ≤ k − 1). Let O represent
the set of all odd integers between 1 and k. We first prove the lemma for the
odd-indexed cells.

Suppose by way of contradiction that for each i ∈ O, µ(ci) = 2. It means
that for each i ∈ O, ci intersects three clusters

〈
u`

i , ui, u
r
i

〉
, where ui is a whole

cluster, and u`
i and ur

i are two crossing clusters. We prove inductively that for
each i ∈ O, ui ∩ Ii 6= ∅ and ur

i ∩ Ii+1 6= ∅.
Base Case: u1 ∩ I1 6= ∅ and ur

1 ∩ I2 6= ∅.
The first part is trivial, because c1 intersects just I1, and hence, u1 ⊆ I1.
The second part is implied by Observation 2(i), because u1 and ur

1 cannot
be entirely contained in I1.

Inductive Step: ui∩Ii 6= ∅ ∧ ur
i∩Ii+1 6= ∅ ⇒ ui+2∩Ii+2 6= ∅ ∧ ur

i+2∩Ii+3 6= ∅.
Suppose by contradiction that ui+2 ∩ Ii+2 = ∅. Therefore, ui+2 must be en-
tirely contained in Ii+1. On the other hand, ur

i ∩Ii+1 6= ∅ implies that u`
i+2 is

entirely contained in Ii+1. But this is a contradiction, because ui+2 and u`
i+2

are contained in the same interval, which is impossible by Observation 2(i).
Now, suppose that ur

i+2 ∩ Ii+3 = ∅. Since ur
i ∩ Ii+1 6= ∅, and clusters do not

overlap, u`
i+2, ui+2, and ur

i+2 should be contained in Ii+1 ∪ Ii+2, which is
impossible by Observation 2(ii).

Repeating the inductive step zero or more times, we end up at either i = k
or i = k− 1. If i = k, then uk ∩ Ik 6= ∅ which is a contradiction, because there is
no Ik. If i = k − 1, then ur

k−1 ∩ Ik 6= ∅ which is again a contradiction, because
we have no Ik.

Both cases lead to contradiction. It means that there exists some i ∈ O
such that µ(ci) < 2. The proof for the even-indexed cells is similar. The only
difference is that we need to prove the base case for i = 2, which is easy to get
by Observations 2(i) and 2(ii). ut
Lemma 2. Let B be a block of size k ≥ 2.

(i) µ(B) ≤ 2k − 1.
(ii) If all borders strictly inside B are open, then µ(B) ≤ 2(k − 1).

Proof. (i) is a direct corollary of Lemma 1, because there are at least two cells
in B (one odd-indexed and one even-indexed) that have cost at most 3/2, and
the other cells have cost at most 2.

(ii) is immediate from the fact that each block of size k ≥ 2 contains exactly
k − 1 intervals from opt(σ), and that each of these k − 1 intervals has cost at
most 2 by Observation 1(i). ut

4 The Analysis

We are now ready to analyze the expected competitive ratio of our algorithm
within a block of size k ≥ 2.

Theorem 1. ρ(2) = 27/16.

Proof. Consider a block B of size 2, consisting of two cells 〈c1, c2〉 (see Fig. 2).
Let I be the single unit interval in B in opt(σ). There are two possibilities.

Case 1: B falls completely in one window w. Let 〈b1, b2〉 be the two border
indicators at the boundaries of w. Let p0 be the first point to arrive in I. W.l.o.g.,
assume p0 is in c2 (the other case is symmetric). We consider four subcases.

– Subcase 1.1: 〈b1, b2〉 = 〈0, 0〉. Here, both boundaries of B are closed. Thus,
after a cluster u has been opened for p0 (by Line 7), all subsequent points in
I are put in the same cluster u. Note that the condition in Line 5 prevents
points from the neighboring windows to join u and make crossing clusters.
So, u is the only cluster in B, and hence, µ(B) = 1.

I

u1 u2 u3

c1 c2

B

b1 b2

Fig. 2. Illustration of Subcase 1.3.

– Subcase 1.2: 〈b1, b2〉 = 〈1, 0〉. When p0 arrives, a new cluster u is opened,
since p0 is in c2, the right border is closed, and w contains < 1 cluster at
the time so that the condition in Line 5 fails. Again, all subsequent points
in I are put in the same cluster, and points from the neighboring windows
cannot join u and make crossing clusters. Hence, µ(B) = 1.

– Subcase 1.3: 〈b1, b2〉 = 〈0, 1〉. We show that µ(B) < 2. Suppose by contra-
diction that µ(B) = 2. By Observation 1(i), I cannot contain two clusters
entirely. Therefore, the only way to get µ(B) = 2 is that I intersects three
clusters 〈u1, u2, u3〉 (from left to right, as always), where u1 and u3 are
crossing clusters, and u2 is entirely contained in I (see Fig. 2). By a similar
argument as in the proof of Observation 1(iii), u2 is opened after u1 and u3

have become crossing clusters. Let p1 be the first point of u1 in w, and p2

be the first point of u1 in the neighboring window. We have two scenarios:
• Subsubcase 1.3.1: p1 ¿ p2. In this case, cluster u1 is opened for p1.

But p2 cannot be put in u1, because upon arrival of p2, w contains < 2
clusters, and thus, the condition in line 5 does not hold.

• Subsubcase 1.3.2: p2 ¿ p1. Here, cluster u1 is opened for p2. But p1

cannot be put in u1, because upon arrival of p1, w contains < 1 cluster,
and hence, the condition in line 5 does not hold.

Both scenarios leads to contradiction. Therefore, µ(B) ≤ 3/2.

– Subcase 1.4: 〈b1, b2〉 = 〈1, 1〉. Here, Lemma 2(ii) implies that µ(B) ≤ 2.

Since each of the four subcases occurs with probability 1/4, we conclude that
the expected value of µ(B) in Case 1 is at most 1

4 (1 + 1 + 3
2 + 2) = 11

8 .

Case 2: B is split between two neighboring windows. Let b be the single border
indicator inside B. Let µ0(B) and µ1(B) represent the value of µ(B) for the case
that b is set to 0 and 1, respectively. It is clear by Lemma 2(ii) that µ1(B) ≤ 2.
We rule out two possibilities:

– Subcase 2.1: µ0(B) = 3. Since I cannot contain both a whole cluster and
a crossing cluster by Observation 2(i), the only possible scenario is that c1

intersects two clusters 〈u1, u2〉, and c2 intersects two clusters 〈u3, u4〉, where
u1 and u4 are crossing clusters, and u2 and u3 are whole clusters. Let p1

be the first point in u2 and p2 be the first point in u3. Suppose w.l.o.g.
that p1 ¿ p2. By Observation 1(iii), p1 arrives after u1 has been opened,
and p2 arrives after u4 has been opened. But when p2 arrives, the window

containing it contains one cluster, u4, and the neighboring window contains
two clusters u1 and u2. Therefore, p2 would be assigned to u2 by Line 5
instead: a contradiction.

– Subcase 2.2: µ0(B) = 5/2 and µ1(B) = 2. Suppose that µ1(B) = 2. Then
I intersects three clusters 〈u1, u2, u3〉, where u1 and u3 are crossing clusters,
and u2 is completely contained in I. Let t be the time at which u1 becomes
a crossing cluster, and let σ(t) be the subset of input points coming up to
time t. By a similar argument as in the proof of Observation 1(iii), any point
in I ∩ c1 not contained in u1 arrives after time t. Therefore, upon receiving
the input sequence σ(t), u1 becomes a crossing cluster no matter whether
the border between c1 and c2 is open or closed. Using the same argument
we conclude that u3 becomes a crossing cluster regardless of the value of b.
Now consider the case where b = 0. Since both u1 and u3 remain crossing
clusters, µ0(B) must be an integer (1, 2, or 3) and cannot equal 5/2.

Ruling out these two subcases, we have µ0(B) + µ1(B) ≤ 4 in all remaining
subcases, and therefore, the expected value of µ(B) in this case is at most 2.

Since each of Cases 1 and 2 occurs with probability 1/2, we conclude that
ρ(2) ≤ 1

2 (11
8) + 1

2 (2) = 27
16 . (This bound is tight: to see this just consider the

block B = [2, 4), and the sequence of 8 points 〈1.5, 2.5, 0.5, 3.5, 4.5, 2.7, 3.2, 5.5〉
for which E[µ(B)] = 27

16 .) ut
Theorem 2. ρ(3) ≤ 17/8.

Proof. Consider a block B of size 3, consisting of cells 〈c1, c2, c3〉, and let b be the
single border indicator strictly inside B. We assume w.l.o.g. that c1 and c2 fall
in the same window (the other scenario is symmetric). We consider two cases.

– Case 1: b = 0. We rule out the following possibilities.
• Subcase 1.1: µ(c2) = 2. Impossible by Lemma 1.
• Subcase 1.2: µ(c1) = µ(c3) = 2. Impossible by Lemma 1.
• Subcase 1.3: µ(c1) = 2 and µ(c2) = µ(c3) = 3/2. Here, B intersects six

clusters 〈u1, . . . , u6〉, where u1, u3, u6 are crossing clusters and u2, u4, u5

are whole clusters. Let 〈I1, I2〉 be the two unit intervals in B in opt(σ).
By Observation 2(i), u3 cannot be entirely contained in I1. This implies
that u4 ∪ u5 ⊂ I2. Now suppose w.l.o.g. that u4 is opened after u5. By
Observation 1(iii), u4 is the last to be opened after u3, u5, u6. Consider
any point p in u4. Upon arrival of p, the window containing p contains at
least one cluster, u3, and the neighboring window contains two clusters
u5 and u6. Therefore, by the condition in Line 5, the algorithm would
assign p to u5 instead of u4, which is a contradiction.

• Subcase 1.4: µ(c1) = µ(c2) = 3/2 and µ(c3) = 2. Similarly impossible.
In all remaining subcases, µ(B) is at most 2 + 3

2 + 1 = 9
2 or 3

2 + 3
2 + 3

2 = 9
2 .

– Case 2: b = 1. Here, Lemma 2(ii) implies that µ(B) ≤ 4.

Each of Cases 1 and 2 occurs with probability 1/2, therefore ρ(3) ≤ 1
2 (4+ 9

2)/2 =
17/8. ut

Theorem 3. ρ(4) ≤ 53/24.

Proof. Consider a block B of size 4. We consider two easy cases.

– Case 1: B falls completely in two windows. Let b be the single border indi-
cator strictly inside B. Now, if b = 1, µ(B) ≤ 6 by Lemma 2(ii), otherwise,
µ(B) ≤ 7 by Lemma 2(i). Therefore, the expected cost in this case is at most
1
2 (6 + 7) = 13

2 .

– Case 2: B is split between three consecutive windows. Let 〈b1, b2〉 be the
two border indicators inside B. For the subcase where 〈b1, b2〉 = 〈1, 1〉 the
cost is at most 6 by Lemma 2(ii), and for the remaining 3 subcases, the cost
of B is at most 7 by Lemma 2(i). Thus, the expected cost in this case is at
most 1

4 (6) + 3
4 (7) = 27

4 .

Since each of Cases 1 and 2 occurs with probability exactly 1/2, we conclude
that ρ(4) ≤ 1

2 (13
2 + 27

4)/3 = 53
24 . ut

Theorem 4. ρ(k) ≤ (2k − 1)/(k − 1) for all k ≥ 5.

Proof. This is a direct implication of Lemma 2(i). ut

5 The Combined Algorithm

The RandBorder algorithm as shown in the previous section has competitive
ratio greater than 2 on blocks of size three and more. To overcome this deficiency,
we need to combine RandBorder with another algorithm that works well for
larger block sizes. A good candidate for this is the näıve grid algorithm:

Grid Algorithm: For each new point p, if the grid cell containing p contains
a cluster, then put p in that cluster, else open a new cluster for p.

It is easy to verify that the Grid algorithm uses exactly k clusters on a block
of size k. Therefore, the competitive ratio of this algorithm within a block of size
k is k/(k − 1). We can now randomly combine the RandBorder algorithm with
the Grid algorithm to obtain an expected competitive ratio strictly less than 2.

Combined Algorithm: With probability 8/15 run RandBorder, and with
probability 7/15 run Grid.

Theorem 5. The competitive ratio of the Combined algorithm is at most 11/6
against oblivious adversaries.

Proof. The competitive ratios of RandBorder and Grid within blocks of size 2
are 27/16 and 2, respectively. Therefore, the expected competitive ratio of the
Combined algorithm is 8

15 (27
16) + 7

15 (2) = 11
6 within a block of size 2. For larger

block sizes, the expected competitive ratio of Combined is always at most 11/6,
as shown in Table 1. By summing over all blocks and exploiting the additivity
of our cost function µ(·), we see that the expected total cost of the solution
produced by Combined is at most 11/6 times the size of opt(σ) for every input
sequence σ. ut

Table 1. The competitive ratio of the algorithms within a block.

Block Size Grid RandBorder Combined

2 2 27/16 11/6

3 3/2 ≤ 17
8

≤ 11/6

4 4/3 ≤ 53
24

≤ 9/5

k ≥ 5 k
k−1

≤ 2k−1
k−1

≤ 23k−8
15(k−1)

Remarks. Currently only a 4/3 randomized lower bound and a 3/2 determin-
istic lower bound are known for the one-dimensional problem [1]. Also, as a
corollary to Theorem 5, we immediately get an upper bound of (11

12) · 2d for the
d-dimensional unit clustering problem under the L∞ metric [1].

References

1. T. M. Chan and H. Zarrabi-Zadeh. A randomized algorithm for online unit clus-
tering. In Proc. 4th Workshop on Approx. and Online Algorithms, volume 4368 of
Lecture Notes Comput. Sci., pages 121–131, 2006.

2. M. Charikar, C. Chekuri, T. Feder, and R. Motwani. Incremental clustering and
dynamic information retrieval. SIAM J. Comput., 33(6):1417–1440, 2004.

3. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-
rithms. MIT Press, 2nd edition, 2001.

4. D. Fotakis. Incremental algorithms for facility location and k-median. In Pro-
ceedings of the 12th Annual European Symposium on Algorithms, volume 3221 of
Lecture Notes Comput. Sci., pages 347–358, 2004.

5. R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering
in the plane are NP-complete. Inform. Process. Lett., 12(3):133–137, 1981.

6. T. Gonzalez. Covering a set of points in multidimensional space. Inform. Process.
Lett., 40:181–188, 1991.

7. A. Gyárfás and J. Lehel. On-line and First-Fit colorings of graphs. J. Graph
Theory, 12:217–227, 1988.

8. D. S. Hochbaum and W. Maass. Approximation schemes for covering and packing
problems in image processing and VLSI. J. ACM, 32:130–136, 1985.

9. H. A. Kierstead and J. Qin. Coloring interval graphs with First-Fit. SIAM J.
Discrete Math., 8:47–57, 1995.

10. A. Meyerson. Online facility location. In Proc. 42nd IEEE Sympos. Found. Com-
put. Sci., pages 426–433, 2001.

11. F. Nielsen. Fast stabbing of boxes in high dimensions. Theoret. Comput. Sci.,
246:53–72, 2000.

12. S. L. Tanimoto and R. J. Fowler. Covering image subsets with patches. In Proc.
5th International Conf. on Pattern Recognition, pages 835–839, 1980.

