
A Streaming Algorithm for 2-Center With Outliers in
High Dimensions

Behnam Hatami∗ Hamid Zarrabi-Zadeh†

Abstract

We study the 2-center problem with outliers in high-dimensional data streams.
Given a stream of points in arbitrary d dimensions, the goal is to find two congruent
balls of minimum radius covering all but at most z points. We present a (1.8 + ε)-
approximation streaming algorithm, improving over the previous (4+ε)-approximation
algorithm available for the problem. The space complexity and update time of our
algorithm are poly(d, z, 1/ε), independent of the size of the stream.

1 Introduction

The k-center problem—covering a set of points using k congruent balls of minimum radius—is
a fundamental problem, arising in many applications such as data mining, machine learning,
statistics, and image processing. In real-world applications where input data is often noisy,
it is very important to consider outliers, as even a small number of outliers can greatly affect
the quality of the solution. In particular, the k-center problem is very sensitive to outliers,
and even a constant number of outliers can increase the radius of the k-center unboundedly.
Therefore, it is natural to consider the following generalization of the the k-center problem:
given a set P of n points in arbitrary d dimensions and a bound z on the number of outliers,
find k congruent balls of minimum radius to cover at least n−z points of P . See Figure 1 for
an example. In this paper, we focus on the data stream model of computation where only
a single pass over the input is allowed, and we have only a limited amount of working space
available. This model is in particular useful for processing massive data sets, as it does not
require the entire data set to be stored in memory.

The Euclidean k-center problem has been extensively studied in the literature. If k is
part of the input, the problem in known to be NP-hard in two and more dimensions [10], and
is even hard to approximate to within a factor better than 1.82, unless P=NP [9]. Factor-2
approximation algorithms are available for the problem in any dimension [9,11]. For small k
and d, better solutions are available. The 1-center problem in fixed dimensions is known to

∗Department of Computer Engineering, Sharif University of Technology, Tehran 14588-89694, Iran.
Email: bhatami@ce.sharif.edu.

†Department of Computer Engineering, Sharif University of Technology, Tehran 14588-89694, Iran.
Email: zarrabi@sharif.edu.

1

bhatami@ce.sharif.edu
zarrabi@sharif.edu


Figure 1: An example of 2-center with 6 outliers.

be LP-type and can be solved in O(n) time [7]. For 2-center in the plane, the current best
algorithm runs in O(n log2 n log2 log n) time [4].

For k-center with outliers, Charikar et al. [6] gave the first algorithm with an approxima-
tion factor of 3, which works in any dimension. Better results are known for small k in the
plane. The 1-center problem with z outliers in the plane can be solved in O(n log n+ z3nε)
time, for any ε > 0, using Matoušek’s framework [14]. Agarwal [1] gave a randomized
O(nz7 log3 z)-time algorithm for 2-center with z outliers in the plane.

In the streaming model, where only a single pass over the input is allowed, McCutchen
and Khuller [15] and independently Guha [12] presented algorithms to maintain a (2 + ε)-
approximation to k-center in any dimension using O((kd/ε) log(1/ε)) space. For k = 1,
Zarrabi-Zadeh and Chan [17] presented a simple algorithm achieving an approximation factor
of 3/2 using only O(d) space. Agarwal and Sharathkumar [2] improved the approximation
factor to (1 +

√
3)/2 + ε ≈ 1.37 using O((d/ε3) log(1/ε)) space. The approximation factor

of their algorithm was later improved to 1.22 by Chan and Pathak [5]. For k = 2, Kim
and Ahn [13] have recently obtained a (1.8 + ε)-approximation using O(d/ε) space. Their
algorithm extends to any fixed k, with the same approximation factor.

For k-center with z outliers in the streaming model, McCutchen and Khuller [15] gave
a (4 + ε)-approximation algorithm using O( zk

ε
) space. When dimension is fixed, a (1 + ε)-

approximation to 1-center with outliers can be maintained in O(z/ε((d−1)/2)) space using the
notion of robust ε-kernels [3,16]. For 1-center with outliers in high dimensions, Zarrabi-Zadeh
and Mukhopadhyay [18] gave a (

√
2α)-approximation, where α is the approximation factor of

the underlying algorithm for maintaining 1-center. Combined with the 1.22-approximation
algorithm of Chan and Pathak [5], it yields an approximation factor of (

√
2 × 1.22) ≈ 1.73

using O(d3z) space.

Our result In this paper, we study the 2-center problem with outliers in high dimensional
data streams. We present a streaming algorithm that achieves an approximation factor of
1.8 + ε, for any ε > 0, using poly(d, z, 1

ε
) space and update time. This improves over the

previous (4 + ε)-approximation streaming algorithm available for the problem presented by
McCutchen and Khuller [15]. The approximation factor of our algorithm matches that of
the best streaming algorithm for the 2-center problem with no outliers. This is somewhat
surprising, considering that the current best approximation factors for streaming k-center
with and without outliers differ by a multiplicative factor of

√
2 for k = 1 [5, 18], and by a

factor of 2 for general k [12, 15]. See Table 1 for a comparison.
To obtain our result, we have used a combination of several ideas including parallelization,

2



Problem
Approximation Factor

Without Outliers With Outliers

1-center 1.22 [5] 1.73 [18]
2-center 1.8 + ε [13] 1.8 + ε [Here]
k-center 2 + ε [12, 15] 4 + ε [15]

Table 1: Summary of the streaming algorithms for k-center with and without outliers in
high dimensions.

far/close ball separation, centerpoint theorem, and keeping lower/upper bounds on the radius
and distance of the optimal balls. We have also employed ideas of [13] for the 2-center
problem with no outliers. However, our problem is much harder here, as we not only need to
find balls of minimum radius, but we also need to decide which subset of points to cluster.
This is in particular more challenging in the streaming model, where we only have a single
pass over the input, and we must decide on the fly which point is an outlier, and which one
can be safely ignored as a non-outlier point, to comply with the working space restriction
enforced by the model.

2 Preliminaries

Let B(c, r) denote a ball of radius r centered at c. We use r(B) to denote the radius
of a ball B. For two points p and q, the distance between p and q is denoted by ∥pq∥.
Given two balls B(c, r) and B′(c′, r′), we define δ(B,B′) ≡ max {0, ∥cc′∥ − r − r′} to be the
distance between B and B′. Two balls B1 and B2 are said to be α-separated, if δ(B1, B2) >
α ·max {r(B1), r(B2)}.

Given an n-point set P in d-dimensions, a point c ∈ Rd is called a centerpoint of P , if
any halfspace containing c contains at least ⌈n/(d+ 1)⌉ points of P . It is well-known that
any finite set of points in d dimensions has a centerpoint [8]. The following observation is a
corollary of this fact.

Observation 1. Given a set P of k(d+1) points in d dimensions, the centerpoint of P has
the property that any convex object not covering the centerpoint, leaves at least k points of
P uncovered.

Given a point set P , the k-furthest point from p ∈ P is a point whose distance to p
is the k-th largest among all points in P . We assume the standard word-RAM model of
computation. Each coordinate value takes a unit of space. Thus, a d-dimensional point
takes O(d) space, and basic operations on the points take O(d) time.

3 A Simple Algorithm for 1-Center with Outliers

To warm up, we present a simple 2-approximation streaming algorithm for the 1-center prob-
lem with outliers. It utilizes a parallelization technique [15], which will be used extensively
during the rest of the paper. The pseudo-code is provided in Algorithm 1. The algorithm

3



c∗
c

p

B B∗

q

Figure 2: Illustrating the proof of Theorem 1

receives as input a stream of points, P , and the number of outliers, z. It assumes that the
first point p1 of the stream is non-outlier. We will show later how to remove this assumption.
The algorithm returns a ball B covering all but at most z points of P .

Algorithm 1 1-Center(P, z)

1: c← the first point in P
2: B ← B(c, 0)
3: Q← ∅ ▷ Q represents the buffer
4: for each p in P do
5: if p /∈ B then
6: insert p into Q
7: if |Q| = z + 1 then
8: q ← closest point to c in Q
9: remove q from Q
10: B ← B(c, ∥cq∥)
11: return B

Theorem 1. Algorithm 1 computes a 2-approximation to the 1-center problem with z out-
liers, assuming that the first point of the stream is not outlier.

Proof. Let B∗(c∗, r∗) be the optimal solution, and let c be the first point of the stream,
which is assumed to be a non-outlier in the optimal solution. Since c is covered by B∗, for
all points p ∈ B∗, we have ∥cp∥ ≤ ∥cc∗∥ + ∥c∗p∥ ≤ 2r∗. Among the z + 1 points furthest
from c, there is at least one point p which is not outlier, and therefore, it is contained in B∗

(see Figure 2). Thus, by our choice of q in the algorithm, we have ∥cq∥ ≤ ∥cp∥ ≤ 2r∗, and
hence, the ball B(c, ∥cq∥) returned by Algorithm 1 is a 2-approximation.

Algorithm 1 assumes that the first point of the stream is not outlier. To remove this assump-
tion, we run z+1 instances of Algorithm 1 in parallel, each of which is given as input one of
the first z + 1 points of the stream, followed by the rest of the points. Clearly, there exists
a point among the first z + 1 points of P which is not an outlier in the optimal solution.
Therefore, the smallest ball among the z + 1 balls computed in parallel is always within

4



factor 2 of the optimal solution. The space complexity of Algorithm 1 for one instance is
O(zd), and its update time is O(d + log z), considering that we can maintain distances of
the points in Q to c using a heap. Overall, we get the following.

Theorem 2. Given a stream of points in d dimensions, we can maintain a 2-approximation
to 1-center with z outliers in O(z2d) space and O(zd+ z log z) update time.

4 The 2-Center Problem With Outliers

In this section, we provide a (1.8 + ε)-approximation algorithm for the 2-center problem
with outliers. In all algorithms presented in this section, we assume that the first point of
the stream, p1, is non-outlier. This assumption can be easily removed by considering z + 1
parallel instances of the algorithm, similar to what we did in Section 3.

Let B∗
1 and B∗

2 be the balls in an optimal solution to 2-center with z outliers on a point
set P . We denote by r∗ the optimal radius, and by δ∗ the distance between B∗

1 and B∗
2 .

Moreover, we assume, w.l.o.g., that p1 is in B∗
1 .

To prove our main result, we distinguish between two cases. The first case is when
δ∗ > αr∗, for some constant α to be fixed later. (It will turn out that α = 12 is a proper
choice.) The second case is when δ∗ ≤ αr∗, for the same value of α. The geometric insight
behind breaking up into these two cases is as follows. When δ∗ ≤ αr∗, the 1-center with
outliers is a good approximation to 2-center with outliers (as will be shown in Lemma 12),
and therefore, we can use Algorithm 1 to approximate the optimal solution in this case. On
the other hand, when δ∗ > αr∗, we know that the optimal balls are well-separated, and
hence, we can separate points into distinct areas based on this assumption. We present the
details of our algorithms for handling these two cases in the rest of this section.

4.1 The Case δ∗ > αr∗

Here, we present a 1.8-approximation algorithm for the case where optimal balls are separated
by a distance greater than αr∗. We start with two simple observations.

Observation 2. Let B1 and B2 be two congruent balls of radius r, with distance δ > αr.
For any two points p ∈ B1 and q ∈ B2, we have 1 ≤ ∥pq∥

δ
< α+4

α
.

Proof. The distance between p and q is at most δ + 4r. Hence, ∥pq∥
δ
≤ 1 + 4r

δ
< 1 + 4

α
.

Observation 3. Let B1 and B2 be two disjoint balls at distance δ, and let B be an arbitrary
ball of radius less than δ

2
. Then B intersects at most one of B1 and B2.

We next prove some properties regarding the optimal balls, B∗
1 and B∗

2 .

Lemma 3. Let B∗
1 and B∗

2 be α-separated. Then for any two points p ∈ B∗
1 and q ∈ B∗

2 , we
have 2r∗ < 2

α
∥pq∥.

Proof. By Observation 2, 1 ≤ ∥pq∥
δ∗

< ∥pq∥
αr∗

, and as a result, 2r∗ < 2
α
∥pq∥.

5



The following lemma shows that if B∗
1 and B∗

2 are α-separated, then a point of B∗
2 can be

found by only considering z + 1 points furthest from the first point.

Lemma 4. Let B∗
1 and B∗

2 be α-separated, with α ≥ 4. If p is a point in B∗
1 , and S is a

(z + 1)-subset of P furthest from p, then S ∩B∗
2 is non-empty.

Proof. Suppose by way of contradiction that S ∩ B∗
2 is empty. Since |S| = z + 1, there is

at least one point in S which is not outlier, and hence, it is in B∗
1 . Let s be a point in

S ∩B∗
1 furthest from p. Consider the ball B = B(p, ∥ps∥). For any point q ∈ P \S, we have

∥pq∥ ≤ ∥ps∥, because s ∈ S and q ̸∈ S. Therefore, B covers P \ S. Since p, s ∈ B∗
1 , ∥ps∥ is

at most 2r∗. Thus, by Observation 3, B∗
2 ∩B = ∅. Therefore, B∗

2 ∩ P = ∅, and hence, B∗
2 is

empty, which contradicts the optimality of the solution.

Lemma 5. Let p be a point in B∗
1 , and q be the (z + 1)-furthest point from p. Then,

δ∗ > α
α+4
∥pq∥.

Proof. By Lemma 4, there exists a point s ∈ B∗
2 such that ∥ps∥ ≥ ∥pq∥. Thus, by Observa-

tion 2, ∥pq∥
δ∗
≤ ∥ps∥

δ∗
< α+4

α
.

Lemma 6. If p ∈ B∗
1(c1, r

∗) and q ∈ B∗
2(c2, r

∗), then B∗
1 ⊆ B(p, 2r∗) and B∗

2 ⊆ B(q, 2r∗),
and hence, at most z points of P lie outside B(p, 2r∗) ∪B(q, 2r∗).

Proof. For any arbitrary point s ∈ B∗
1 , ∥ps∥ ≤ ∥pc1∥ + ∥c1s∥ ≤ 2r∗, and therefore, B∗

1 ⊆
B(p, 2r∗). Similarly, we have B∗

2 ⊆ B(q, 2r∗). Considering that at most z points of P are
outliers, the proof is complete.

Lemma 7. Let S be a subset of P of size at least (d + 1)(z + 1), enclosed by a ball B of
radius less than δ∗/2. Then S intersects exactly one of B∗

1 and B∗
2 , and the centerpoint of S

lies inside either B∗
1 or B∗

2 .

Proof. Not all points in S are outliers, because (d + 1)(z + 1) > z. Therefore, B intersects
at least one of B∗

1 and B∗
2 . Observation 3 implies that B intersects exactly one of B∗

1 and
B∗

2 . Assume, w.l.o.g., that B intersect B∗
1 . Now, by Observation 1, if the centerpoint of S is

not in B∗
1 , then z + 1 points of S remain uncovered by B∗

1 , contradicting the fact that there
are at most z outliers.

The Algorithm We now describe our algorithm for handling the case δ∗ > αr∗. At any
point of time, our algorithm maintains a partition of P into three disjoint subsets B1, B2,
and Buffer. The first point p1 is assumed, w.l.o.g, to be in B∗

1 . (We have already assumed
that p1 is not outlier.) The algorithm tries to partition points in such a way that at the end,
B1 contains the whole B∗

1 , and B2 contains the whole B∗
2 , with possibly some outliers being

contained in B1 and B2. The algorithm sets c1 = p1 as the fixed center of B1, and picks c2
among the points processed so far as a candidate for being the center of B2. Moreover, the
algorithm maintains two values δ and r, where at any time, δ is a lower bound of δ∗, and r
is an upper bound of 2r∗ (under a certain condition).

Our algorithm is presented in Algorithm 2. For each input point p ∈ P , the algorithm first
tries to add p to either B1 or B2, using functions AddToB1 and AddToB2, respectively.

6



Algorithm 2 2-Center-First-Case(P )

1: r ← 0, δ ← 0
2: c1 ← p1
3: for each p ∈ P do
4: if AddToB1(p) = false and AddToB2(p) = false then
5: add p to Buffer
6: while |Buffer| > z do
7: if |B2| ≥ (d+ 1)(z + 1) then
8: B1 ← B1 ∪B2, B2 ← ∅
9: else if c2 is set then
10: B1 ← B1 ∪ {c2}
11: T ← Buffer ∪B2 \ {c2}
12: B2 ← ∅
13: c2 ← (z+1)-furthest point from c1 in T
14: r ← 2

α
∥c1c2∥

15: Buffer← ∅
16: for q ∈ T do
17: if AddToB1(q) = false and AddToB2(q) = false then
18: add q to Buffer

If none of them fits, the point is added to Buffer. The function AddToB1 adds a point p
to B1 only if it is within distance δ of the center c1. Similarly, AddToB2 adds a point p to
B2 only if it is within r-radius of c2. The two functions also update the values of δ and r
whenever necessary, to maintain the invariants to be defined in Lemma 8.

Algorithm 3 AddToB1(p)

1: if at least z + 1 points have been processed so far then
2: q ← (z + 1)-furthest point from c1
3: else
4: q ← c1
5: δ ← α

α+4
∥c1q∥

6: if p ∈ B(c1, δ) then
7: B1 ← B1 ∪ {p}
8: return true
9: return false

Whenever the buffer overflows (in line 6 of Algorithm 2), the algorithm takes one of the
following actions depending on the size of B2. If |B2| ≥ (d+1)(z+1), then the points of B2

are moved to B1, and B2 is reset. Otherwise, the old c2 (if already set) is moved to B1, and
another point from T = B2 ∪ Buffer \ {c2} is picked as c2. The while loop iterates at most
O(dz) times, because after the first iteration, we are sure that T has at most (d+1)(z+1)+z
points, from which one point (i.e., c2) is removed at each subsequent iteration.

For the sake of analysis, we maintain a “central point”, denoted by cp, which is defined
as follows: if |B2| < (d+ 1)(z + 1), then cp = c2, otherwise, cp is the centerpoint of the first

7



Algorithm 4 AddToB2(p)

1: if c2 is set and p ∈ B(c2, r) then
2: B2 ← B2 ∪ {p}
3: if |B2| = (d+ 1)(z + 1) then
4: r ← (2 + 2

α
)× r

5: for q in Buffer do
6: if q ∈ B(c2, r) then
7: B2 ← B2 ∪ {q}
8: remove q from Buffer
9: return true
10: return false

(d+1)(z+1) points currently in B2. It is clear by our definition that cp is always inside B2.

Lemma 8. The following invariants are maintained during the execution of the algorithm:

(a) δ < δ∗

(b) r ≤ δ/2

(c) B1 ∩B∗
2 = ∅

(d) if cp ∈ B∗
2 , then

1. 2r∗ < r

2. B2 ∩B∗
1 = ∅

3. all points in Buffer are outliers.

Proof. Invariant (a): At the beginning, δ = 0, which clearly satisfies the invariant. After
z + 1 points of the stream is processed, function AddToB1 starts updating δ to α

α+4
∥c1q∥,

where q is the (z + 1)-furthest point from c1 in the current stream. Now, since c1 ∈ B∗
1 ,

Lemma 5 implies that δ < δ∗.
Invariant (b): When c2 is set by Algorithm 2, it is the (z+1)-furthest point from c1 in a

set T ⊆ P , and r is set to 2
α
∥c1c2∥. Let q be the (z+1)-furthest point from c1 in the stream

at that moment. Then ∥c1c2∥ ≤ ∥c1q∥. For α ≥ 12, we have (2+ 2
α
)( 2

α
) < α

2(α+4)
. Therefore,

r ≤
(
2 +

2

α

)
2

α
∥c1c2∥ <

α

2(α+ 4)
∥c1q∥ = δ/2,

which implies that the invariant holds, even after increasing r by function AddToB2.
Invariant (c): We first claim that if c2 is set, then B(cp,

2
α
∥c1cp∥) ⊆ B2(c2, r). If |B2| <

(d + 1)(z + 1), then cp = c2 and r = 2
α
∥c1c2∥, and therefore, B2 = B(cp,

2
α
∥c1cp∥). When

the size of B2 reaches (d + 1)(z + 1), the central point cp moves to the centerpoint of B2,
and r is increased by a factor of (2 + 2

α
). Because the centerpoint of B2 lies in B2, we have

cp ∈ B(c2,
2
α
∥c1c2∥). Therefore, ∥c2cp∥ ≤ 2

α
∥c1c2∥, and hence

∥c1cp∥ ≤ ∥c1c2∥+ ∥c2cp∥ ≤ (1 +
2

α
)∥c1c2∥. (1)

8



Now, we have

B(cp,
2

α
∥c1cp∥) ⊆ B(cp, (1 +

2

α
)
2

α
∥c1c2∥)

⊆ B(c2, ∥c2cp∥+ (1 +
2

α
)
2

α
∥c1c2∥)

⊆ B(c2, (2 +
2

α
)
2

α
∥c1c2∥) = B2(c2, r),

which completes the proof of the claim.
Now, we prove invariant (c). A point p can be added to B1 in two cases. The first case is

in function AddToB1, where the point is added to B1 only if it is within distance δ of the
center c1, which by invariant (a), guaranties ∥pc1∥ < δ∗. Therefore, p ̸∈ B∗

2 in this case.
The second case occurs in Algorithm 2, when the buffer overflows and B2 is non-empty.

The algorithm takes one of the following actions depending on the size of B2. If |B2| <
(d+1)(z+1), then cp = c2, and the algorithm adds c2 to B1. Suppose by way of contradiction
that c2 ∈ B∗

2 . By Lemma 3 and invariant (b), 2r∗ < 2
α
∥c1c2∥ = r ≤ δ/2 ≤ δ. Therefore, by

Lemma 6, there must be at most z points outside B1(c1, δ) and B2(c2, r), which contradicts
the overflow of the buffer. If |B2| ≥ (d + 1)(z + 1), then cp is the centerpoint of the first
(d+1)(z+1) points currently in B2. In this case, we add all points of B2 to B1. By invariant
(b), r ≤ δ/2 < δ∗/2. Therefore, by Lemma 7, B2 intersects exactly one of B∗

1 and B∗
2 , and

therefore we have either cp ∈ B∗
1 or cp ∈ B∗

2 . Suppose by way of contradiction that cp ∈ B∗
2 .

In this case, by the claim that we proved earlier, B2 covers B(cp,
2
α
∥c1cp∥). Moreover, by

Lemma 3 and invariant (b), 2r∗ < r ≤ δ/2 ≤ δ. Therefore, by Lemma 6, there must be
at most z points outside B1(c1, δ) and B(cp,

2
α
∥c1cp∥) ⊆ B2(c2, r), which contradicts the

overflow of the buffer.
Invariant (d-1): By Observation 2, if c1 ∈ B∗

1 and cp ∈ B∗
2 , then 1 ≤ ∥c1cp∥

δ∗
< ∥c1cp∥

αr∗
,

and as a result, 2r∗ < 2
α
∥c1cp∥. If |B2| < (d + 1)(z + 1), then cp = c2, and by Algorithm 2,

r = 2
α
∥c1c2∥, and therefore, 2r∗ < r. If |B2| ≥ (d+ 1)(z + 1), then by inequality (1),

2r∗ <
2

α
∥c1cp∥ ≤ (1 +

2

α
)
2

α
∥c1c2∥ < (2 +

2

α
)
2

α
∥c1c2∥ = r.

Invariant (d-2): We know that cp ∈ B2. If cp ∈ B∗
2 , then by invariants (a) and (d-1),

2r∗ < r ≤ δ/2 < δ∗/2. Now, by Observation 3, B2 intersects only B∗
2 , and hence, B2∩B∗

1 = ∅.
Invariant (d-3): By invariants (b) and (d-1), 2r∗ < r ≤ δ/2 ≤ δ. Therefore, by Lemma 6,

all points outside B1(c1, δ) and B2(c2, r) are outliers.

Answering Queries We now describe how the information maintained by Algorithm 2
can be used to answer queries of the following form: find two congruent balls of minimum
radius to cover all but at most z points of the stream processed so far.

We call a partition of P into subsets B1, B2, and Buffer a proper partition, if B1 completely
contains B∗

1 , B2 completely contains B∗
2 , and all points in Buffer are outliers. The key point

here is that if we have an algorithm for the 1-center problem with outliers, then given a
proper partition of P into B1, B2, and Buffer, we can find an optimal solution to 2-center
with z outliers on P . Algorithm 6 describes how to find such a solution. We know that all
points in Buffer are outliers. Therefore, there are z − |Buffer| outliers in B1 ∪B2. However,

9



Algorithm 5 Query

1: solutions ← {MinCover(B1, B2,Buffer)}
2: candidates ← B2 ∪ Buffer
3: if |B2| ≥ (d+ 1)(z + 1) then
4: candidates ← Buffer
5: B1 ← B1 ∪B2

6: B2 ← ∅
7: for c ∈ candidates do
8: B′

1, B
′
2, Buffer

′ = Partition(c, candidates, B1)
9: add MinCover(B′

1, B
′
2, Buffer

′) to solutions
10: return min {solutions}

Algorithm 6 MinCover(B1, B2,Buffer)

1: solutions ← {}
2: for k ← 0, . . . , (z − |Buffer|) do
3: r1 ← 1-Center(B1, k)
4: r2 ← 1-Center(B2, z − |Buffer| − k)
5: add max {r1, r2} to solutions
6: return min {solutions}

we do not know how many outliers are exactly in each of B1 and B2. To overcome this
issue, we try all possible combinations of k outliers in B1 and z − |Buffer| − k outliers in
B1, for 0 ≤ k ≤ z − |Buffer|, and return the one with the minimum radius. Clearly, one of
the combinations explored corresponds to an optimal solution, and therefore, the output of
Algorithm 6 is optimal.

Now, we describe our query algorithm presented in Algorithm 5. There are two cases
in the algorithm. If cp ∈ B∗

2 , then by invariants (b) and (d), the current sets B1, B2, and
Buffer maintained by Algorithm 2 form a proper partition, and hence, the computed solution
in line 1 is optimal. Otherwise, if cp ̸∈ B∗

2 , then invariant (d) cannot be used. However,
a crucial fact here is that if we know a point p ∈ B∗

1 and a point q ∈ B∗
2 , then a proper

partition can be computed (using function Partition to be described in Algorithm 7). We
already know that c1 ∈ B∗

1 . Therefore, it only remains to find a point c ∈ B∗
2 . To find

such a point, we simply check all possible candidate points. By invariant (c), B1 ∩ B∗
2 = ∅.

Therefore, there exists a point in (B2∪Buffer)∩B∗
2 , and hence, we only need to consider the

points in B2 ∪ Buffer as candidates for c. However, the size of B2 may be very large. The
next lemma shows that if |B2| ≥ (d+ 1)(z + 1), then Buffer∩B∗

2 ̸= ∅, and therefore, we can
only consider the points in Buffer as candidates for c in this case.

Lemma 9. At any time, if |B2| ≥ (d+ 1)(z + 1) and cp ̸∈ B∗
2 , then B2 ∩B∗

2 = ∅.

Proof. By invariants (a) and (b), we know that r ≤ δ/2 < δ∗/2. By Lemma 7, cp ∈ B∗
1 ∪B∗

2 .
Since cp ̸∈ B∗

2 , we have cp ∈ B∗
1 . On the other hand, by Observation 3, B2 intersects at most

one of B∗
1 and B∗

2 . Therefore, B2 ∩B∗
2 = ∅.

Our partitioning algorithm (Algorithm 7) works as follows. For the current candidate point c,

10



Algorithm 7 Partition(c, S,B1)

1: r ← 2
α
∥c1c∥

2: δ ← max{δ, r}
3: B′

1 ← B1, B
′
2 ← ∅, Buffer′ ← ∅

4: for p ∈ S do
5: if AddToB′

1(p) = false and AddToB′
2(p) = false then

6: add p to Buffer′

7: return B′
1, B

′
2, Buffer

′

the algorithm constructs B′
1(c1,max{δ, 2

α
∥c1c∥}) and B′

2(c,
2
α
∥c1c∥). We know that B1 ⊆ B′

1,
and hence, we only need to see which points in Buffer ∩B2 are inside B′

1. Algorithm 7 uses
functions AddToB′

1 and AddToB′
2 for adding points to B′

1 and B′
2, respectively. These

functions are the same as AddToB1 and AddToB2, with the only exception that they
add points to B′

i instead of Bi, for i = 1, 2. Note that all variables in Algorithms 5 and 7,
including B1, B2, r, and δ are local variables, and changing them will not effect their value
in the main algorithm.

If c ∈ B∗
2 , then by Lemma 3, 2r∗ ≤ 2

α
∥c1c∥. Therefore, by Lemma 6, B∗

1 ⊆ B′
1 and

B∗
2 ⊆ B′

2. On the other hand, since the distance of the new points added to B′
1 is less than

∥c1p∥ ≤ max{δ, 2
α
∥c1c∗∥}, we have by invariant (c) that B′

1 ∩B∗
2 = ∅. As a result, B′

1 (resp.,
B′

2) completely covers B∗
1 (resp., B∗

2), and the points in Buffer are all outliers. Therefore, if
c ∈ B∗

2 , the algorithm finds a proper partition. The following theorem summarizes the result
of this section.

Theorem 10. If δ∗ > αr∗, a 1.8-approximation to 2-center with z outliers can be maintained
in O(d3z2) space and poly(d, z) update/query time.

Proof. Our algorithm for answering queries (Algorithm 5) considers all valid candidates for
c, and therefore, for at least one of them the partition obtained in proper. In the streaming
model, we cannot afford keeping all the points of B1 and B2. Therefore, in both Algorithms 2
and 5, we maintain the sets B1 and B2 in a data structure that supports adding points, and
gives a β-approximation to 1-center with k outliers, for k = 0, . . . , z. Moreover, we maintain
a set Bu = B1 ∪B2 in a similar data structure. Note that these data structures do not need
to maintain all the points. They only need to have a buffer of size (d + 1)(z + 1) to keep
the most recently added points, because we access points in B2 only if its size is less than
(d+ 1)(z + 1).

To maintain B1, B2, and Bu, we use the streaming algorithm of [5,18], which provides an
approximation factor of 1.22×

√
2 < 1.8. The algorithm uses O(d3z) space and has poly(d, z)

update time. Since we need to run z + 1 instances of Algorithm 2 in parallel, the space and
update time are multiplied by a factor of z.

4.2 The Case δ∗ ≤ αr∗

Our idea in this section is to carefully adapt the algorithm of Kim and Ahn [13], originally
designed for maintaining an approximate 2-center. To avoid duplication, we just sketch the
main steps of their algorithm, and explain our modifications to it. Kim and Ahn’s algorithm,

11



..

1

.

2a

.

2b

.

2c

.

3a

.

3b

.

3c

. 3d. 3e

Figure 3: State diagram of the KA algorithm. Labels are taken from [13].

Algorithm 8 2-Center-Second-Case(P, z, r)

1: solutions ← {}
2: for each (n1, n2, n3, n4) such that

∑
ni = z do

3: for each π ∈ {1, 2, 3} do
4: counteri ← 0, for i = 1, . . . , 4
5: B1 ← B(p1, r), B2 ← ∅
6: j ← 1 ▷ j represents current level
7: for each p ∈ P do
8: if p ̸∈ B1 ∪B2 then
9: counterj ← counterj + 1
10: if counterj > nj then
11: j ← j + 1
12: if j > 4 then exit the inner for loop
13: (B1, B2)← KA.insert(p, π)
14: if j ≤ 4 then
15: add max {r(B1), r(B2)} to solutions
16: return min {solutions}

which we refer to as the KA algorithm, has 9 different states, shown in Figure 3. Depending
on the points arrived so far, the algorithm is in one of these states. In each state, the
algorithm keeps at most two balls as a candidate solution. A transition between the states
occurs whenever a point not covered by any of the two balls arrives.

The algorithm starts at node 1, and proceeds through the transition graph as points
arrive. In some states, there is more than one state to follow, and the algorithm has no prior
information which one is the correct choice. However, there are only three different paths to
follow in the transition graph. Hence, we can easily run three instances of the algorithm in
parallel, each of which follows one of the paths deterministically, to make sure that at any
time, at least one of the instances is in a correct state.

Our modification is on the transition part. Points that are covered by the current solution
can be safely ignored, as they do not cause any change in the current solution, and hence, they
cause no transition. Only those points that lie outside the current solution are candidates
for being outliers. Since the number of outliers in each state is unknown, we try all possible
choices. The observation here is that the transition graph is a DAG of depth four. If ni

12



(1 ≤ i ≤ 4) represents the number of outliers in depth i, then it suffices to consider all tuples
(n1, . . . , n4) such that

∑4
i=1 ni = z. It is easy to verify that there are O(z3) such tuples.

The pseudocode of our algorithm is presented in Algorithm 8. For each possible choices
of n1 to n4, and each of the three paths in the transition graph, numbered from 1 to 3,
the algorithm keeps a candidate solution (B1, B2) to the 2-center of non-outlier points, a
parameter j representing the current level in the transition graph, and four counters to keep
track of the number of outliers seen so far at each level.

The algorithm starts with B1 = B(p1, r) and B2 = ∅, which corresponds to Case 1 of the
KA algorithm. (The value r is given as input to the algorithm, satisfying r ≥ 1.2r∗.) For
each new point p, we first check if it is contained in the current solution. If so, then B1 and
B2 are valid solutions so far, and we proceed to the next point. Otherwise, if the number
of outliers seen in the current level has not yet reached nj, we consider p as an outlier and
proceed. Otherwise, we go to the next level, and update the current candidate solution,
(B1, B2), using the KA algorithm. We give the transition path π along with the point p to
the KA algorithm to help it deterministically decide which state to choose as the next one.

After all points in P are processed, if we are in one of the four states in the current
path, then the obtained solution is added to the feasible solutions. Otherwise, the solution
is not feasible, and is abandoned as in the KA algorithm. Finally, we return the best
solution among all computed feasible solutions. Kim and Ahn [13] proved that in all feasible
solutions computed this way, the larger ball among B1 and B2 has radius at most 3/2r,
provided δ∗ ≤ αr∗. (Their proof is stated for α = 2, but can be extended to any α ≥ 2.)
Assuming that we have a good estimate r satisfying 1.2r∗ ≤ r < (1.2 + 2ε/3)r∗, we get the
following.

Theorem 11. For δ∗ ≤ αr∗, Algorithm 8 maintains a (1.8 + ε)-approximation to 2-center
with z outliers in O(dz3) space and O(dz3) update time, assuming that the first point of
the stream is not outlier, and that an estimate 1.2r∗ ≤ r < (1.2 + 2

3
ε)r∗ is provided to the

algorithm.

Proof. Since our algorithm considers all possible solutions, the best solution obtained has
larger radius at most 3r/2 [13]. Combined by our assumption of r ≤ (1.2 + 2

3
ε)r∗, the

approximation factor of 3r/2 ≤ (1.8 + ε)r∗ follows. Our algorithm maintains at most two
balls in each case, and therefore it uses O(dz3) space. Whenever a new point is inserted, the
algorithm updates the solution for each subcase in O(d) time. Therefore, the update time of
the algorithm is O(dz3). Answering a query consists of choosing the minimum radius among
all the candidate solutions, which amounts to O(dz3) total time.

Maintaining an Estimate We assumed in Theorem 11 that at any time, an estimate
1.2r∗ ≤ r < (1.2+ 2ε/3)r∗ is available to the algorithm. In the following, we show how such
an estimate can be maintained upon processing the stream. The next lemma provides a key
ingredient of our result.

Lemma 12. Given a point set P in Rd, an optimal solution to 1-center with z outliers on
P yields a (2 + α

2
)-approximation for 2-center with z outliers, provided that δ∗ ≤ αr∗.

Proof. Let r∗1 and r∗ be the optimal radii for the 1-center and 2-center problems with z
outliers on P , respectively. It is clear that r∗ ≤ r∗1, because any feasible solution B∗ for

13



δ∗

2 ≤ α
2 r

∗
r∗r∗

c∗1 c∗2

B∗
2

c

B∗
1

Figure 4: Illustrating the proof of Lemma 12

1-center with z outliers yields a feasible solution (B∗, B∗) for 2-center with z outliers. Now,
suppose that B∗

1(c
∗
1, r

∗) and B∗
2(c

∗
2, r

∗) are the balls in an optimal solution for the 2-center
problem with z outliers. Let c be the midpoint of the segment connecting c∗1 to c∗2 (see
Figure 4). Clearly, B

(
c, δ

∗

2
+ 2r∗

)
covers both B∗

1 and B∗
2 . Therefore, it is a feasible solution

for the 1-center problem with z outliers. Hence, r∗1 ≤
(
2 + α

2

)
r∗.

Corollary 13. If δ∗ ≤ αr∗, Algorithm 1 computes a (4 + α)-approximation to r∗.

Proof. This is a direct corollary of Theorem 1 and Lemma 12.

Lemma 14. At any time over the stream, an estimate 1.2r∗ ≤ r < (1.2 + 2ε/3)r∗ can be
maintained in O(dz3/ε) space and O(dz3/ε) update time, assuming that the first point of the
stream is not outlier.

Proof. We use Algorithm 1 to find a (4 + α)-approximation to r∗ by Corollary 13. Let ri be
the radius calculated by Algorithm 1 after receiving the i-th point, pi. Clearly, the sequence
of ri’s is increasing. Let k be an integer such that 2k−1 ≤ ri ≤ 2k, and set ℓi = 2k. (If ri = 0,
we set ℓi = 0.) Obviously, ℓi ≤ 2ri, and hence, by Corollary 13, ℓi is a (8+2α)-approximation
to r∗. We divide the interval (0, 1.2ℓi] into m = ⌈1.2(3α+ 12)/ε⌉ equal segments, each of
length ti = 1.2ℓi/m. Clearly, ti ≤ (2ε/3)r∗. Therefore, in the set Ri = {j · ti | j = 1, . . . ,m},
there is at least one value r for which the inequality 1.2r∗ ≤ r ≤ (1.2 + 2ε

3
)r∗ holds.

We run m instances of Algorithm 8 for each value r ∈ Ri in parallel. Whenever a new
point pi is added, if ℓi = ℓi−1, then Ri = Ri−1, and the new point is inserted to all parallel
instances. If ℓi > ℓi−1, then the set Ri has two types of values. Those values in Ri which
are less than 1.2ℓi are also present in Li−1, because ti/ti−1 is a positive power of 2. For these
values, we continue executing the corresponding instance. If a value r ∈ Ri is not present in
Ri−1, then we have r ≥ 1.2ℓi−1 ≥ ℓi−1. Since those points not lying in the candidate solution
are saved in the buffer of Algorithm 1 (which has size at most z), all non-outlier points of
this algorithm lie in the candidate balls of Algorithm 8 which has center p1 and radius at
most li−1. These outliers have been stored in a buffer. Since Algorithm 8 maintains two
balls with radius at least r, one of which (say B1) is centered at p1, then all non-outlier
points of Algorithm 1 are in B1, and hence, they do not make any transition in the states
of Algorithm 8. Therefore, for any new value r, it suffices to execute Algorithm 8 with only
the outlier points in the buffer of Algorithm 1.

14



As described in the proof of Lemma 14, a good estimate for r∗ can be obtained by running
O(1/ε) instances of Algorithm 8 in parallel. By adding another level of parallelization to
remove the assumption of p1 being a non-outlier, we get the following.

Theorem 15. If δ∗ ≤ αr∗, a (1.8 + ε)-approximation to 2-center with z outliers can be
maintained in O(dz

4

ε
) space and O(dz

5

ε
) update/query time.

Theorems 10 and 15 together yield the following main result of the paper.

Theorem 16. Given a stream of points in d dimensions, we can maintain a (1.8 + ε)-
approximation to 2-center with z outliers using O(d3z2 + dz4/ε) space and poly(d, z, 1

ε
) up-

date/query time.

5 Conclusions

In this paper, we presented a (1.8 + ε)-approximation streaming algorithm for the 2-center
problem with outliers in Euclidean space. It improves over the previous (4+ε)-approximation
algorithm available for the problem due to McCutchen and Khuller [15]. It is interesting
to see if the ideas used in this paper can be extended to the k-center problem with outliers
in the data stream model, for general k, or even for small values of k ≥ 3. Finding better
approximation factors and/or space complexities for the cases k = 1, 2 is another interesting
problem that remains open.

Acknowledgement The authors would like to thank Kiana Ehsani and Sahand Mozaffari
for their thoughtful discussions, and for their very helpful comments on the first draft of this
paper.

References

[1] P. K. Agarwal and J. M. Phillips. An efficient algorithm for 2d Euclidean 2-center with outliers.
In Proc. 16th Annu. European Sympos. Algorithms, pages 64–75. 2008.

[2] P. K. Agarwal and R. Sharathkumar. Streaming algorithms for extent problems in high
dimensions. In Proc. 21st ACM-SIAM Sympos. Discrete Algorithms, pages 1481–1489, 2010.

[3] P. K. Agarwal and H. Yu. A space-optimal data-stream algorithm for coresets in the plane.
In Proc. 23rd Annu. ACM Sympos. Comput. Geom., pages 1–10, 2007.

[4] T. M. Chan. More planar two-center algorithms. Comput. Geom. Theory Appl., 13(3):189–198,
1999.

[5] T. M. Chan and V. Pathak. Streaming and dynamic algorithms for minimum enclosing balls
in high dimensions. Comput. Geom. Theory Appl., 47(2):240–247, 2014.

[6] M. Charikar, S. Khuller, D. M. Mount, and G. Narasimhan. Algorithms for facility location
problems with outliers. In Proc. 12th ACM-SIAM Sympos. Discrete Algorithms, pages 642–
651, 2001.

[7] B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization prob-
lems in fixed dimension. J. Algorithms, 21(3):579–597, 1996.

15



[8] L. Danzer, B. Gruenbaum, and V. Klee. Helly’s theorem and its relatives. In Proc. Symposia
in Pure Mathematics 7, pages 101–180, 1963.

[9] T. Feder and D. Greene. Optimal algorithms for approximate clustering. In Proc. 20th Annu.
ACM Sympos. Theory Comput., pages 434–444, 1988.

[10] R. J. Fowler, M. S. Paterson, and S. L. Tanimoto. Optimal packing and covering in the plane
are NP-complete. Inform. Process. Lett., 12(3):133–137, 1981.

[11] T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoret. Comput.
Sci., 38:293–306, 1985.

[12] S. Guha. Tight results for clustering and summarizing data streams. In Proc. 12th Internat.
Conf. Database Theory, pages 268–275, 2009.

[13] S.-S. Kim and H.-K. Ahn. An improved data stream algorithm for clustering. Comput. Geom.
Theory Appl., 48(9):635–645, 2015.

[14] J. Matoušek. On geometric optimization with few violated constraints. Discrete Comput.
Geom., 14(1):365–384, 1995.

[15] R. M. McCutchen and S. Khuller. Streaming algorithms for k-center clustering with outliers
and with anonymity. In Proc. 11th Internat. Workshop Approx. Algorithms, pages 165–178,
2008.

[16] H. Zarrabi-Zadeh. An almost space-optimal streaming algorithm for coresets in fixed dimen-
sions. Algorithmica, 60(1):46–59, 2011.

[17] H. Zarrabi-Zadeh and T. M. Chan. A simple streaming algorithm for minimum enclosing balls.
In Proc. 18th Canad. Conf. Computat. Geom., pages 139–142, 2006.

[18] H. Zarrabi-Zadeh and A. Mukhopadhyay. Streaming 1-center with outliers in high dimensions.
In Proc. 21st Canad. Conf. Computat. Geom., pages 83–86, 2009.

16


	Introduction
	Preliminaries
	A Simple Algorithm for 1-Center with Outliers
	The 2-Center Problem With Outliers
	The Case * > r*
	The Case * r*

	Conclusions

