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Abstract

Given a set of points in the plane, the unit cluster-
ing problem asks for finding a minimum-size set of unit
disks that cover the whole input set. We study the unit
clustering problem in a distributed setting, where input
data is partitioned among several machines. We present
a (3 + ε)-approximation algorithm for the problem in
the Euclidean plane, and a (4 + ε)-approximation algo-
rithm for the problem under general Lp metric (p ≥ 1).
We also study the capacitated version of the problem,
where each cluster has a limited capacity for covering
the points. We present a distributed algorithm for the
capacitated version of the problem that achieves an ap-
proximation factor of 4+ε in the L2 plane, and a factor
of 5 + ε in general Lp metric. We also provide some
complementary lower bounds.

1 Introduction

The exponential growth of data in real-world applica-
tions and the incapability of individual computers to
store and process the whole data have motivated the
research in the area of distributed algorithms. In this
paper, we study the distributed version of the following
unit clustering problem. Given a set of n points in the
plane, partition the points into clusters, each enclosable
by a unit disk, so as to minimize the number of clus-
ters used. An instance of the problem is illustrated in
Figure 1. The problem has applications in various areas
including image processing [14, 19] and wireless sensor
networks [18, 20].
The unit clustering problem is known to be NP-hard

in the Euclidean plane [11]. The first polynomial-time
approximation scheme (PTAS) for the problem was
given by Hochbaum and Maass [14]. The runtime of
the PTAS was later improved by Feder and Greene to

nO(1/ϵd−1) in any fixed d dimensions [10]. A PTAS for
the capacitated version of the problem is recently given
in [12]. Online variants of the problem are also studied
in the literature [6, 9].
For massive datasets, where no single machine can

store the whole data, distributed models such as
MapReduce have been introduced and extensively used
over the past decade [2, 4, 8, 13, 16]. In the distributed
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Figure 1: An instance of unit clustering.

unit clustering problem, the input set S is partitioned
among a set of machines, where each machine i has a
subset Si of the input, and the goal is to compute col-
laboratively a unit clustering of the whole set S =

∪
i Si.

The notion of composable coresets introduced in [15]
has been proved to be useful in designing distributed
algorithms that take O(1) rounds of MapReduce. In
this framework, each machine performs a computation
on its portion of data, and sends a small subset of its
data (called a coreset) to a central machine. The cen-
tral machine then composes the coresets and finds an
approximate solution based on the information carried
by the coresets. This framework has been successfully
used to derive approximation algorithms for several op-
timization problems [1, 3, 7, 17].

In this paper, inspired by the idea of composable
coresets, we design distributed algorithms for the ca-
pacitated and uncapacitated versions of the unit clus-
tering problem. For the uncapacitated version, we pro-
vide a (3+ε)-approximation algorithm in the Euclidean
plane, and a (4 + ε)-approximation algorithm in the
plane under general Lp metric, for any real number
p ≥ 1. For the capacitated version, we provide a (4+ε)-
approximation algorithm in the L2 plane, and a (5+ε)-
approximation algorithm under general Lp metric. We
also prove some lower bounds on the approximation fac-
tor and communication complexity of any distributed
algorithm for the problem under the composable coreset
framework. In particular, we show that the unit cluster-
ing problem in the Euclidean plane admits no compos-
able coreset with approximation factor better than 2.
Moreover, we show that the communication complexity
of our algorithms is optimal under this framework.
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2 Preliminaries

Given a real number p ≥ 1, and two points a = (xa, ya)
and b = (xb, yb) in the plane, the distance of a and b
under Lp metric is defined as

dp(a, b) =
p

√
|xa − xb|p + |ya − yb|p,

and d∞(a, b) = max(|xa − xb|, |ya − yb|). We refer to
the plane R2 in which Lp metric is the distance measure
as the Lp plane. Whenever we state a proposition for
all Lp metrics, p ≥ 1, we implicitly assume that L∞ is
also included.

For p ≥ 1 and r ≥ 0, an Lp disk of radius r is defined
as the set of points {a ∈ R2 | dp(a, c) ≤ r}, where c ∈ R2

is the center of the disk. An Lp disk of radius 1 is called
a unit Lp disk. Whenever the underlying metric Lp is
clear from the context, we simply use the terms disk
and unit disk.

Given a set of points in the plane under an Lp met-
ric, the unit clustering problem is to cover the points
by congruent disks of radius r, so as to minimize the
number of disks used. We refer to this problem as UCr.
Moreover, we denote by UCr(S) an optimal solution to
the UCr problem on an input set S. Whenever r = 1,
we drop r from the notation, and simply write UC and
UC(S), instead.

3 Covering Disks With Smaller Ones

In this section, we present some upper bounds on the
number of disks of radius r < 1 needed to cover a unit
disk. We will use the following well-known fact as an
ingredient: for any 1 ≤ p ≤ q, a unit Lp disk can be
covered by a unit Lq disk.

Lemma 1 Under any Lp metric, p ≥ 1, a unit disk can

be covered by ⌈2/r⌉2 disks of radius r, for 0 < r ≤ 1.

Proof. Let D be a unit Lp disk, and S be a unit L∞
disk covering D. As S is a square of side length 2, it can
be covered by ⌈2/r⌉2 squares of side length r. On the
other hand, each square of side length r can be covered
by an Lp disk of radius r, which completes the proof. □

According to Lemma 1, a unit disk in any Lp plane can
be covered by a constant number of smaller disks, when-
ever the radius of the smaller disks is fixed. The next
two lemmas provide tighter bounds on this constant.

Lemma 2 Under any Lp metric, p ≥ 1, a unit disk can
be covered by four disks of radius

√
2/2.

Proof. We prove the lemma in two cases:
Case 1: 1 ≤ p < 2. LetD be a unit Lp disk, and S be

a unit L2 disk covering D. As illustrated in Figure 2, S

can be covered by four diamonds (L1 disks) of diameter√
2. On the other hand, each of these four diamonds

can be covered by an Lp disk of radius
√
2/2. Hence,

four Lp disks of radius
√
2/2 can cover a unit Lp disk

in this case.
Case 2: p ≥ 2. Let D be a unit Lp disk, and S be

a square of side length 2 enclosing D. As illustrated in
Figure 3, S can be covered by four L2 disks of radius√
2/2. On the other hand, each of these four L2 disks

can be covered by an Lp disk of the same radius. There-
fore, four Lp disks of radius

√
2/2 can cover a unit Lp

disk in this case, which completes the proof. □

Figure 2: Four diamonds covering a disk.

Figure 3: Four disks covering a square.

It is worth noting that a unit L1 disk cannot be cov-
ered by less than four smaller L1 disks. Moreover, in
L2 metric, four disks of radius r <

√
2/2 cannot cover a

unit disk. Hence, in general Lp metric, both our bounds
of 4 and

√
2/2 are essentially tight. Nevertheless, for the

special case of L2 metric, it is possible to cover a unit
disk by a fewer number of smaller disks.

Lemma 3 In the L2 plane, a unit disk can be covered
by three disks of radius

√
3/2.

Proof. The proof is illustrated in Figure 4. □

4 Distributed Unit Clustering

In this section, we present a distributed approximation
algorithm for the unit clustering problem under any Lp

metric, p ≥ 1. The pseudo-code is presented in Algo-
rithm 1. The algorithm runs in two phases. In the first
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Figure 4: Three disks of radius
√
3
2 covering a unit disk.

phase, the i-th local machine (1 ≤ i ≤ m), processes
its input data Si and sends a subset Ti as a coreset to
the central machine. In the second phase, the central
machine combines the coresets obtained form local ma-
chines into a single set T , and computes a disk cover
C of T , which after a proper adjustment can cover the
whole input set.

Algorithm 1 Distributed Unit Clustering

1: Let r =
√
3/2 and δ = (1− r)/2.

2: on each machine i (1 ≤ i ≤ m) in parallel do

3: Find an O(1)-approximation Ci to UCδ(Si).

4: For each disk D ∈ Ci, pick an arbitrary point in

Si ∩D, and add it to a set Ti.

5: Send Ti to the central machine.

6: on the central machine do

7: Let T =
∪m

i=1 Ti.

8: Find a (1 + ε)-approximation C to UCr(T ).

9: Increase the radii of disks in C from r to 1.

10: return C.

Theorem 4 Algorithm 1 is a (3+ε)-approximation al-
gorithm for the unit clustering problem in the L2 plane,
and a (4 + ε)-approximation algorithm for the problem
under general Lp metric, p ≥ 1. The runtime of the
algorithm is O(n log n) + (mk)O(1/ε), and its communi-
cation complexity is O(mk), where n is the total number
of points, m is the number of machines, and k is the size
of an optimal solution.

Proof. Let S =
∪m

i=1 Si be the input set in the plane,
under a given Lp metric, p ≥ 1. We first prove that the
output of the algorithm, C, is a feasible solution, i.e.,
each point in S is covered by a disk in C. Fix a point
q ∈ Si ⊆ S. By our algorithm, q is covered by a disk of
radius δ in Ci. As we add one point from each disk in Ci

to Ti, there is point t ∈ Ti which is within distance 2δ
to q. On the other hand, each point of T is covered by
a disk of radius r in C. Let D be the disk in C covering
t. Therefore, the distance of t to the center of D is at

most r. As such, the distance of q to the center of D is
at most r+2δ = r+(1− r) = 1. Therefore, q is covered
by D after its radius is increased to one. Hence, C is a
feasible solution.

Now, we prove the approximation factor of the algo-
rithm. Let C∗ be an optimal solution to UC(S), and
C ′ be an optimal solution to UCr(T ). By Lemma 2,
each disk in C∗ can be covered by four disks of radius
r =

√
3/2 >

√
2/2. Therefore, there is a set of 4|C∗|

disks of radius r covering S. Since T ⊆ S, we have
|C ′| ≤ 4|C∗|. Moreover, the set C computed by the
algorithm is a (1 + ε)-approximation to C ′, and there-
fore we have |C| ≤ (1 + ε)|C ′| ≤ (4 + 4ε)|C∗|. By
re-adjusting ε properly (e.g., by running the algorithm
with ε′ = ε/4), we get an approximation factor of 4 + ε
for the problem, for any ε > 0. In the special case of
L2 metric, Lemma 3 states that each disk in C∗ can be
covered by three disks of radius r =

√
3/2, and hence,

the approximation factor of the algorithm is 3+ε in this
case.

The communication complexity of the algorithm cor-
responds to the size of T =

∪m
i=1 Ti. For 1 ≤ i ≤ m, let

C∗
i and C ′

i be optimal solutions to UC(Si) and UCδ(Si),
respectively. Since Si ⊆ S, we have |C∗

i | ≤ |C∗|.
Moreover, by Lemma 1, each unit disk in C∗

i can be
covered by a constant number of disks of radius δ,
and hence, |C ′

i| ≤ c · |C∗
i |, for some constant c ≥ 1.

On the other hand, each Ci is an α-factor approxi-
mation to C ′

i, for some constant α ≥ 1, and thus,
|Ci| ≤ α|C ′

i| ≤ αc|C∗
i | ≤ αc|C∗|. As |Ti| = |Ci|, we

have |T | =
∪m

i=1 |Ti| ≤ m · αc|C∗|. Since |C∗| = k, the
communication complexity of the algorithm is O(mk).

For the runtime, we note that a (1+ε)-approximation
to UC can be computed in nO(1/ε) time [10], and a
constant-factor approximation to UC can be obtained
in O(n log n) time [5]. The runtime of our algorithm on
the i-th machine is therefore O(|Si| log |Si|), which sums
to O(|S| log |S|) = O(n log n) on all local machines, and
amounts to |T |O(1/ε) = (mk)O(1/ε) on the central ma-
chine. □

5 Capacitated Unit Clustering

In this section, we consider the capacitated version of
the unit clustering problem, where each disk has a fixed
capacity L. We present a distributed approximation al-
gorithm for this version of the problem under any Lp

metric, p ≥ 1. The algorithm is presented in Algo-
rithm 2. The first phase of the algorithm is similar to
that of Algorithm 1, except that here, each point t ∈ Ti

is assigned a weight w(t) which specifies the number of
points t is representative for. These weights are then
used in the second phase to properly limit the number
of points assigned to each computed unit disk.
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Algorithm 2 Capacitated Unit Clustering

1: Let r =
√
3/2 and δ = (1− r)/2.

2: on each machine i (1 ≤ i ≤ m) in parallel do

3: Find an O(1)-approximation Ci to UCδ(Si).

4: Assign each point of Si to one of its covering

disks in Ci, with ties broken arbitrarily.

5: For each disk D ∈ Ci, pick an arbitrary point

t ∈ Si ∩D, set its weight w(t) to the number of

points assigned to D, and add t to Ti.

6: Send Ti to the central machine.

7: on the central machine do

8: Let T =
∪m

i=1 Ti.

9: Find a (1 + ε)-approximation C0 to UCr(T ).

10: Assign each point of T to one of its covering disks

in C0, with ties broken arbitrarily.

11: For each disk D ∈ C0, add ⌈w(D)/L⌉ copies of

D to a set C, where w(D) is the total weight of

points assigned to D.

12: Distribute point weights among their covering

disks in C, so that each disk receives weight ≤ L.

(A point weight may be split among two disks.)

13: Increase the radii of disks in C from r to 1.

14: return C.

Theorem 5 Algorithm 2 is a (4+ε)-approximation al-
gorithm for the capacitated unit clustering problem in
the L2 plane, and a (5+ε)-approximation algorithm for
the problem under general Lp metric, p ≥ 1. The run-
time of the algorithm is O(n log n) + (mk)O(1/ε), and
its communication complexity is O(mk), where n is the
total number of points, m is the number of machines,
and k is the size of an optimal solution.

Proof. Let S =
∪m

i=1 Si be the input set in the plane,
under a given Lp metric, p ≥ 1. First, notice that the
output of the algorithm, C, is a feasible solution. This
is because each point in S is within distance r+ 2δ = 1
to the center of one of the disks in C, by an argument
similar to what we used in Algorithm 1. Moreover, by
our distribution of the weights among disks, no disk in C
receives more than L points. Therefore, C is a feasible
solution. The runtime and communication complexity
of the algorithm are also implied by the same arguments
used in the proof of Algorithm 1.

It only remains to prove the approximation factor of
the algorithm. Let C∗ be an optimal solution to the
capacitated unit clustering problem on the set S, and
let C ′ be an optimal solution to (uncapacitated) UC(S).
Note that |C ′| ≤ |C∗|. Moreover, |C∗| ≥ n/L, because
all n points in S are covered by |C∗| disks of capacity L.

According to the algorithm,

|C| =
∑

D∈C0

⌈w(D)/L⌉

≤
∑

D∈C0

(1 + w(D)/L)

= |C0|+ n/L

≤ |C0|+ |C∗|.

Moreover, according to the proof of Theorem 4, C0 is
a (4 + ε)-approximation to C ′ under general Lp metric,
and a (3 + ε)-approximation to C ′ under L2 metric.
Therefore, |C| ≤ (5 + ε)|C∗| in general Lp metric, and
|C| ≤ (4 + ε)|C∗| in the L2 plane, which completes the
proof. □

6 Lower Bounds

In this section, we provide lower bounds on the approx-
imation factor of any distributed algorithm for the unit
clustering problem in the L2 plane under the compos-
able coreset framework. We also prove a lower bound
on the communication complexity of the distributed al-
gorithms for the problem under this framework.

A coreset algorithm receives as input a sequence S
of points, and returns as output a subset of S, called a
coreset. We call a coreset algorithm rotation-invariant
if for a fixed sequence S of points, it always returns the
same coreset, even if the input is rotated in the plane.

Theorem 6 The unit clustering problem in the L2

plane admits no composable coreset with approximation
factor better than 2. If the underlying coreset algo-
rithm is rotation-invariant, the problem admits no α-
composable coreset, for any α < 3.

Proof. Let A be the coreset algorithm used by local
machines. Let S be a sequence of points evenly placed
on a circle of radius 1/2. We can pick S sufficiently large
so that |A(S)| < |S|. Then, by the pigeonhole principle,
there exist two distinct subsequences T1 and T2 of S
such that A(T1) = A(T2). Assume w.l.o.g. that a point
v ∈ S is in T1 but not in T2. Since A(T1) = A(T2),
we have v /∈ A(T1). Let C1 and C2 be two concentric
circles of radius 1 and 1+ε, respectively, for some ε > 0,
such that v is on the boundary of C2, while other points
lie inside C1 (see Figure 5). Let u be the point on the
boundary of C1 furthest away from v.

Consider an instance with two partitions S1 and S2

(on two separate machines), where S1 = {u} and S2

is either T1 or T2. If S2 = T1, at least two unit disks
are needed to cover all the points as d(u, v) > 2. On
the other hand, if S2 = T2, the whole input can be
covered by a single unit disk, C1. When A(S2) is sent to
the central machine, it cannot distinguish whether the
original set has been T1 or T2. Therefore, any solution
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Figure 5: A lower bound example with two partitions.

returned by it must have at least two unit disks to ensure
feasibility, causing an approximation factor of at least 2.
If A is rotation-invariant, we can obtain a stronger

lower bound as follows. Define m copies of S rotated
and evenly placed on the perimeter of C2, as shown in
Figure 6. Consider an input consisting of m partitions
S1, . . . , Sm where each partition corresponds to one of
these copies, and can be a rotated copy of either T1 or
T2. If all Si’s are of type T1 and m is sufficiently large,
then at least three unit disks are needed to cover all
the points, in particular, those on the perimeter of C2.
On the other hand, if all Si’s are of type T2, the whole
input can be covered by a single unit disk, C1. In both
cases, the composable coresets received by the central
machine are the same, since A(T1) = A(T2) in each
copy. Thus, the number of unit disks returned must be
at least 3 to make sure the output is feasible. Therefore,
the approximation factor cannot be better than 3. □

v1
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v2

v3

v4
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v6
S2

S3
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Figure 6: Data partitions on six machines.

The algorithms provided in this paper both have
O(mk) communication complexity. The following the-
orem shows that the communication complexity of our
algorithms is indeed optimal.

Theorem 7 Any distributed algorithm for the unit
clustering problem under the composable coreset frame-
work requires Ω(mk) communication, where m is the
number of machines, and k is the size of an optimal
solution.

Proof. Let Si be the set of points in the i-th machine
(1 ≤ i ≤ m), and let ki be the size of an optimal unit
clustering for Si. Suppose that all Si’s are far from
each other, so that no disk covering a point in Si can
cover a point in Sj , for j ̸= i. If the coreset sent by the
i-th machine contains less than ki points, the central
machine receives no enough information to cover all the
points in Si, and hence, the final solution will not be
feasible. Therefore, the number of points sent by the
i-th machine must be at least ki.

Now, consider the case where all machines have the
same set of points, and hence, ki = k for all 1 ≤ i ≤
m. By the argument provided above, each machine,
independently from the others, must send at least k
points to the central machine, and hence, the central
machine receives at least mk points in this case. □

7 Conclusions

In this paper, we studied the unit clustering problem
in a distributed settings, and presented approximation
algorithms for both capacitated and uncapacitated ver-
sions of the problem in general Lp metric, p ≥ 1. Our al-
gorithms can be implemented in O(1) rounds of MapRe-
duce. Moreover, the composable coresets provided in
this paper naturally lead to algorithms in the one-pass
streaming model. In higher dimensions, our algorithms
can be extended in a natural way to obtain constant
factor approximations in any fixed d dimensions. It is
interesting to see if the approximation factors of our
algorithms can be improved, in particular, in the capac-
itated version.
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