
CCCG 2015, Kingston, Ontario, August 10–12, 2015

Diversity Maximization via Composable Coresets

Sepideh Aghamolaei∗ Majid Farhadi∗ Hamid Zarrabi-Zadeh∗

Abstract

Given a set S of points in a metric space, and a diver-
sity measure div(·) defined over subsets of S, the goal
of the diversity maximization problem is to find a sub-
set T ⊆ S of size k that maximizes div(T ). Motivated
by applications in massive data processing, we consider
the composable coreset framework in which a coreset
for a diversity measure is called α-composable, if for
any collection of sets and their corresponding coresets,
the maximum diversity of the union of the coresets α-
approximates the maximum diversity of the union of the
sets. We present composable coresets with near-optimal
approximation factors for several notions of diversity,
including remote-clique, remote-cycle, and remote-tree.
We also prove a general lower bound on the approxi-
mation factor of composable coresets for a large class of
diversity maximization problems.

1 Introduction

The diversity maximization problem—finding a subset
of k points to maximize some function of the inter-point
distances—is a fundamental problem in location the-
ory [20,21] and has received considerable attention over
the past few years, due to its application to search re-
sult diversification [5, 6, 14]. Various notions of diver-
sity have been studied in the literature, most of which
are proved to be NP-hard in both metric and geomet-
ric settings, and hence, the focus has been on providing
efficient approximation algorithms. Among the most
well-studied diversity problems are remote-edge, whose
objective is to maximize the minimum distance in the k-
subset [7,11,22], and the remote-clique problem, whose
aim is to maximize the average distance [8, 12, 13, 18].
There are also some results on maximizing other com-
binatorial structures such as minimum spanning trees
and minimum-weight tours [10,16].

Motivated by applications in massive data process-
ing, we consider the coreset framework, which is a fun-
damental tool for designing approximation algorithms,
especially for large data sets [4]. In this framework,
a small subset of input data set, called a “coreset”, is
extracted in such a way that solving the optimization
problem on the coreset yields a solution to the whole
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data set with a guaranteed approximation factor. Many
coresets considered in the literature are “decomposable”
in the sense that taking the union of two coresets com-
puted for two given sets yields a coreset for the union
of those two sets with the same approximation guar-
antee. This property is essentially useful for designing
streaming algorithms [9, 17], as it allows to maintain a
coreset for the points recently inserted, and merge it to
the coreset maintained for the rest of the points.

In [24], Zarrabi-Zadeh introduced a special class of
decomposable coresets, called “core-preserving”, hav-
ing an additional property that taking a coreset of a
coreset yields a coreset with the same size and approxi-
mation factor. Such coresets are in particular useful for
obtaining streaming algorithms whose working space is
independent of the size of input. The idea was used to
obtain efficient streaming algorithms for problems such
as k-center [24] and maintaining ε-kernels of fat point
sets [25]. A similar idea was coined as “mergeable core-
sets” by Agarwal et al. [3], and was used to obtain better
algorithms for maintaining statistical data summaries in
the data stream model.

Very recently, Indyk et al. [19] introduced the no-
tion of “composable coresets” in which the union of
a collection of coresets gives a coreset for the points
in the union of the sets within a guaranteed approxi-
mation factor. All decomposable coresets (and hence,
core-preserving and mergeable coresets) are composable
by definition. However, in composable coresets, the ap-
proximation factor may be increased after taking union,
though it is still guaranteed to be within a certain fac-
tor. Composable coresets are in particular useful for
distributed settings and MapReduce computation, in
which a massive point set is partitioned among a set
of machines/mappers, and each machine maps its input
data into a composable coreset. A single reducer then
takes the union of all the coresets received from the
mappers, and computes a solution to the union, which
is guaranteed to be within a good approximation factor.

Our contributions. In this paper, we revisit the
composable coresets framework of Indyk et al. [19], and
further refine it to the notion of “disjoint composable
coresets”, in which input data sets are assumed to be
disjoint. We present improved composable coresets for
several diversity maximization problems in both disjoint
and non-disjoint settings. The problems studied in this
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Problem Diversity Measure

Approximation Factor

Previous [19]
New

Disjoint General

Remote-edge minp,q∈S d(p, q) 3 3† 3†

Remote-clique
∑

p,q∈S d(p, q) 51 6 + ε 7 + 4
√

2 + ε

Remote-star minp∈S
∑

q∈S\{p} d(p, q) 102 12 26

Remote-bipartition minQ⊂S,|Q|=k/2

∑
p∈Q,q∈S\Q d(p, q) 255 18 38

Remote-tree w(MST(S)) 6 4 4

Remote-cycle w(TSP(S)) 12 3† 3†

Remote t-trees minS=S1|···|St

∑t
i=1 w(MST(Si)) 6 4 4

Remote t-cycles minS=S1|···|St

∑t
i=1 w(TSP(Si)) 12 5 5

Table 1: Summary of the new results. In this table, S denotes the input set, d is the distance function in the
underlying metric space, ε > 0 is an arbitrarily small constant, and S = S1| · · · |St denotes a partition of S into t
subsets. Tight factors are marked with † sign.

paper are listed and formally defined in Table 1. Here
is a brief summary of our results.

• For the remote-clique problem, a factor-51 com-
posable coreset was presented in [19]. When in-
put sets are disjoint, we show that a much bet-
ter approximation factor of 6 + ε (for any ε > 0)
is achievable for the problem. In general non-
disjoint case, we provide an approximation factor
of 7 + 4

√
2 + ε ≈ 12.66 + ε, greatly improving over

the best previous factor of 51.

• For the remote-edge problem, a factor-3 com-
posable coreset was presented in [1, 19]. Indyk
et al. [19] left this question open whether a bet-
ter approximation factor is possible. We settle this
question in negative by showing that 3 is the best
factor possible for the remote-edge problem. Our
proof is indeed very general, and implies a lower
bound of 3 for all notions of diversity listed in Ta-
ble 1.

• We show that for any point set, the weight of its
clique approximates the weight of its minimum par-
tition to within a factor of 3 − 4

k , improving upon
the previous bound of 5 proved in [19]. Combined
with our new factor for the remote-clique problem,
this yields improved factors of 18 and 38 for the
remote partition problem in the disjoint and non-
disjoint settings, respectively, substantially improv-
ing over the previous bound of 255 available for the
problem.

• We prove a tight upper bound of 2− 2
k on the ratio

of the weight of the minimum star of a point set
and the weight of its clique. This yields improved
factors of 12 and 26 for the remote-star problem in
the disjoint and non-disjoint settings, respectively,
greatly improving over the previous bound of 102
available for the problem.

• For the remote-cycle problem, we present a factor-
3 composable coreset, improving the best previous
bound of 12 available for the problem. Our core-
set is indeed optimal, considering the general lower
bound of 3 that we have presented in this paper.

• For the remote-tree and remote t-trees problems,
we provide an approximation factor of 4, improving
over the best previous factor of 6 obtained in [19].
We also improve the approximation factor of the
remote t-cycles problem from 12 to 5.

As with many other approximation algorithms, our
algorithms for extracting the coresets are simple, and
are based on two known off-line algorithms, namely the
Gonzalez’s algorithm and the local search. However, the
analyses of the approximation factors are non-trivial,
and are based on finding a careful mapping from the
points in the optimal solution to the points in the core-
set, while keeping the error incurred as small as possible.

2 Preliminaries

Let (X, d) be a metric space, and f be a measure de-
fined over subsets of X. A function c(·) that maps a set
S ⊆ X into one of its subsets is called an α-composable
coreset for f , if for any collection of sets S1, . . . , S`, with
S = ∪`i=1Si and T = ∪`i=1c(Si),

max

{
f(S)

f(T )
,
f(T )

f(S)

}
6 α.

The value α > 1 is called the approximation factor of
the coreset. A disjoint α-composable coreset is anal-
ogously defined, with an additional property that the
input sets Si are assumed to be disjoint.

Given a point set S in a metric space (X, d), we denote
by G[S] a complete graph over vertex set S, with edge
weights specified by the metric distance d. Let Π denote
a specific graph structure (e.g., a clique or a spanning
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Algorithm 1 GMM(S, k)

1: T ← {an arbitrary point p ∈ S}
2: for i = 2, . . . , k do
3: find a point p ∈ S \ T maximizing d(p, T )
4: T ← T ∪ {p}
5: return T

Algorithm 2 LocalSearch(S, k)

1: T ← a k-subset of S containing the two farthest pts
2: while ∃ p ∈ T, q ∈ S \ T s.t.

div(T \ {p} ∪ {q}) > (1 + ε
k ) div(T ) do

3: T ← T \ {p} ∪ {q}
4: return T

tree). Following the terminology of [10], we define the
remote-Π problem as follows. For a point set S ⊆ X, the
diversity of S (with respect to Π), denoted by div(S),
is the weight of a Π structure in G[S] whose total edge
weight is minimum. The k-diversity of S, denoted by
divk(S), is the maximum diversity over all k-subsets of
S, i.e., divk(S) = maxP⊆S,|P |=k div(P ). The remote-
Π problem is then to compute, for a given point set S
and a parameter k, the k-diversity of S with respect
to Π. For example, the remote-tree problem involves
finding a k-subset of S whose minimum spanning tree
has maximum weight. Note that divk(S) is undefined
when |S| < k.

For a weighted graph G, we denote by w(G) the total
weight of the edges in G. Given a set S, we denote by
S = S1| · · · |St the partition of S into t disjoint subsets
S1, . . . , St.

2.1 Algorithms

The two offline algorithms that we will use for comput-
ing the coresets are the Gonzalez’s algorithm and the
local search. The Gonzalez’s algorithm [15], presented
in Algorithm 1, starts from an arbitrary point, and iter-
atively adds a point whose distance to the points already
chosen is maximized. If r denotes the minimum pairwise
distance in the set T = GMM(S, k), then the following
two properties, known as anti-cover properties, hold:

• ∀p ∈ T : d(p, T \ {p}) > r

• ∀p ∈ S : d(p, T ) 6 r

The local search algorithm [2], presented in Algo-
rithm 2, starts with an arbitrary subset of size k contain-
ing the two farthest points, and then, at each iteration
tries to locally improve its current solution by exchang-
ing a single point. The total number of iterations of this
algorithm is at most log1+ ε

k
(k2) = O(k

ε log k).

3 Composable Coresets for Diversity Problems

Consider a collection of sets S1, . . . , S`, and let S =
∪`i=1Si. For each set Si, we compute a coreset Ti =
c(Si), and set T = ∪`i=1Ti. Let O be an optimal solution
for S, i.e. a k-subset of S for which div(O) = divk(S).
We denote by Oi the portion of O lying inside Si, but
not in any other Sj (j < i), i.e., Oi = O ∩ Si \ ∪j<iSj .
This partitions O into ` disjoint subsets Oi.

In the following, we obtain upper bounds on the ap-
proximation factor of composable coresets designed for
various notions of diversity. More precisely, we show
how to compute coresets Ti such that their union T is
a good representation of S, i.e., its diversity is within
a guaranteed factor of divk(S). We accomplish this by
comparing the k-diversity of T with that of O, which is
in turn equal to the k-diversity of S.

3.1 Remote Clique

In this section, we show that the local search algo-
rithm computes a factor 6 + ε composable coreset for
the remote-clique problem when input sets are disjoint.
Throughout this subsection, div(·) refers to the remote-
clique diversity.

Let Ti = LocalSearch(Si, k). We denote by ri the
average weight of edges in Ti, i.e., ri = div(Ti)/

(
k
2

)
, and

set r = maxi {ri}. Note that, for i = arg maxi {ri},
divk(T ) > divk(Ti) =

(
k
2

)
ri =

(
k
2

)
r. We first prove the

following lemma.

Lemma 1 For any point o ∈ Oi \ Ti,∑
t∈Ti

d(o, t) 6 (1 + ε)kr.

Proof. For any a ∈ Ti, the termination condition of
local search implies that

div(Ti \ {a} ∪ {o}) 6 (1 +
ε

k
) div(Ti).

By the definition of remote-clique diversity we have∑
p,q∈Ti

d(p, q)−
∑
t∈Ti

d(a, t) +
∑
t∈Ti

d(o, t)− d(o, a)

6 (1 +
ε

k
) div(Ti).

Summing over all points a ∈ Ti, we get

k div(Ti)− 2 div(Ti) + k
∑
t∈Ti

d(o, t)−
∑
t∈Ti

d(o, t)

6 (k + ε) div(Ti),

which simplifies to

(k − 1)
∑
t∈Ti

d(o, t) 6 (2 + ε) div(Ti).
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Replacing ri = div(Ti)/
(
k
2

)
, we get∑

t∈Ti

d(o, t) 6 (1 +
ε

2
)× kri 6 (1 + ε)kr.

Hence, the proof. �

Lemma 2 Let Qi = Oi \ Ti. There exists a bipartite
matching between Qi and Ti that covers Qi and has
weight at most (1 + ε)|Qi|r.
Proof. Let M be the set of all maximal bipartite
matchings between Qi and Ti. Any maximal match-
ing in M covers Qi, because |Qi| 6 |Ti|. There are
P (k, |Qi|) = k!

(k−|Qi|)! matchings in M . Each edge

(q, t) ∈ Qi × Ti appears in exactly P (k − 1, |Qi| − 1)
of such matchings. Therefore, the sum of the weights of
all matchings in M is:

P (k − 1, |Qi| − 1)
∑
q∈Qi

∑
t∈Ti

d(q, t)

6 P (k − 1, |Qi| − 1)
∑
q∈Qi

(1 + ε)kr

= P (k − 1, |Qi| − 1)(1 + ε)|Qi|kr
= P (k, |Qi|)(1 + ε)|Qi|r,

where the first inequality holds by Theorem 1. There-
fore, the expected weight of the matchings in M is at
most (1 + ε)|Qi|r, and hence, there must exist a match-
ing in M whose weight does not exceed this expecta-
tion. �

Theorem 3 The local search algorithm computes a
factor-(6+ε) disjoint composable coreset for the remote-
clique problem.

Proof. Let Mi be a maximal bipartite matching be-
tween Qi and Ti, obtained by Lemma 2. Let M be
the union of Mi’s. Since all Ti’s are disjoint, M forms
a matching between Q = O \ T and T that covers all
vertices of Q and has weight at most (1 + ε)|Q|r.

Let f : O → T be a function that maps each vertex
o ∈ O ∩ T to o itself, and each vertex o ∈ O \ T to the
vertex matched to o by M . The weight of this mapping
is equal to the weight of M , and hence, is at most (1 +
ε)|Q|r. Moreover, for each vertex in range(f), there are
at most two vertices of O mapped to it. Now, we can
use triangle inequality to get:

div(O) =
∑

o1,o2∈O
d(o1, o2)

6
∑

o1,o2∈O
[d(o1, f(o1)) + d(f(o1), f(o2)) + d(f(o2), o2)]

= (|O| − 1)
∑
o∈O

d(o, f(o)) +
∑

o1,o2∈O
d(f(o1), f(o2))

6 (|O| − 1)(1 + ε)(|Q|r) + 4 div(range(f))

6 2(1 + ε)

(
k

2

)
r + 4 divk(T ) 6 (6 + 2ε) divk(T ),

where in the last two inequalities we used |Q| 6 |O| = k,
and divk(T ) >

(
k
2

)
r. �

Remark. When input sets are not necessarily disjoint,
we prove that the local search algorithm computes a fac-
tor 7+4

√
2+ε composable coreset for the remote-clique

problem. Details will be provided in the full version.

3.2 Remote Bipartition and Remote Star

In order to provide improved composable coresets for
the remote-bipartition and remote-star problems, we
first show that the weight of the clique of a point set ap-
proximates the weight of the minimum bipartition and
the minimum star of that point set to within factors
3− 4

k and 2− 2
k , respectively. These improve the previ-

ous bounds of 5 and 2, respectively, proved in [19]. Both
our new bounds are indeed tight.

Lemma 4 For any point set of size k > 2, the weight
of its clique is a (3− 4

k )-approximation of the weight of
its minimum bipartition. This bound is tight.

Proof. Recall that a bipartition of a point set P of size
k is obtained by dividing P into two subsets L and R of
equal size k/2, and the weight of such bipartition is the
total weight of edges between L and R. It is clear from
the definition that w(bipartition(L,R)) 6 w(clique(P )).
By triangle inequality, for any two vertices u, v ∈ R
and any w ∈ L, we have d(u, v) 6 d(u,w) + d(w, v).
Summing this inequality over all u, v ∈ R and w ∈ L
yields:

k

2
× w(clique(R)) 6

(
k

2
− 1

)
w(bipartition(L,R)).

The same inequality holds for w(clique(L)). There-
fore, w(clique(P )) = w(clique(L)) + w(clique(R)) +
w(bipartition(L,R)) 6

(
3− 4

k

)
w(bipartition(L,R)).

To see tightness, consider an example in which all edges
inside L and R have weight 2, and the edges between L
and R have weight 1. The approximation factor in this

case is
(

(k
2 )2 + 4

(
k/2
2

))
/(k

2 )2 = 3− 4
k . �

The proof for the remote-star is similar, and is omit-
ted here. Combined with the factor-(6 + ε) composable
coreset for the remote-clique problem presented in The-
orem 3, and by setting ε = O(1/k), we get the following
result.

Theorem 5 The local search algorithm computes a
factor-12 composable coreset for the remote-star prob-
lem, and a factor-18 composable coreset for the remote-
bipartition problem, when input sets are disjoint.
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MST(F)

Tree(O)

Figure 1: Tree(O) built from MST(F ). Dotted lines
show the mapping from O to F .

Remark. When input sets are not disjoint, our im-
proved composable coreset for the remote-clique prob-
lem which has an approximation factor of 7+4

√
2+ε ≈

12.32 + ε yields a factor-26 composable coreset for the
remote-star problem, and a factor-38 composable core-
set for the remote-bipartition problem.

3.3 Remote Tree and Remote Cycle

In this section, we provide a factor-4 composable core-
set for the remote-tree problem, and a factor-3 compos-
able coreset for the remote-cycle problem. For both
problems, we first run GMM on each Si to obtain
Ti = GMM(Si, k). We then obtain the union of the
coresets T = ∪`i=1Ti, and set r = maxi minp,q∈Ti

d(p, q).

Theorem 6 The GMM algorithm computes a factor-4
composable coreset for the remote-tree problem.

Proof. Let div(S) = w(MST(S)) denote the remote-
tree diversity, and let O be a k-subset of S maximizing
div(O). We show that div(O) 6 4 divk(T ).

Consider a mapping f : O → T that maps each
point o ∈ O to its closest point in T . Let F =
{f(o) : o ∈ O} ⊆ T be the range of f , and fix a min-
imum spanning tree MST(F ) of F .

We partition O into subsets Q1, . . . , Qm such that
p, q ∈ Qi if and only if f(p) = f(q). We now build a
spanning tree Tree(O) on O by first building an arbi-
trary tree on each subset Qi, and then connecting two
components Qi and Qj if there are oi ∈ Qi and oj ∈ Qj

such that f(oi) and f(oj) are connected in MST(F ).
(See Figure 1.)

By the anticover property of GMM, the length of
edges between each oi and f(oi) is at most r. So, by
triangle inequality, the total cost of edges corresponding
to the trees Qi is at most (k− |F |)× 2r. For each edge
ef ∈ MST(F ), there is an edge eo ∈ Tree(O) such that
eo 6 ef + 2r. There are |F | − 1 such edges in total.
Therefore,

w(Tree(O)) 6 w(MST(F )) + 2r(k − |F |) + 2r(|F | − 1)

= w(MST(F )) + 2r(k − 1).

Now, let R ⊆ T be an arbitrary superset of F of
size k, and let ST(R) be a minimum Steiner tree of
R that connects the vertices of F . It is well-known
that w(MST(F )) 6 2 ·w(ST(R)) (see, e.g., [23]). More-
over, it is obvious that w(ST(R)) 6 w(MST(R)), be-
cause ST(R) is a minimum-weight tree that only con-
nects a subset of R, as opposed to MST(R) that con-
nects all points in R. Therefore, we have w(MST(F )) 6
2 · w(MST(R)), and hence,

w(MST(O)) 6 w(Tree(O))

6 w(MST(F )) + 2r(k − 1)

6 2 · w(MST(R)) + 2 divk(T ) 6 4 divk(T ),

where, the inequality (k − 1)r 6 divk(T ) follows from
the fact that by the definition of r, there is a set Ti with
k points whose pairwise distance is at least r. �

Theorem 7 The GMM algorithm computes a factor-3
composable coreset for the remote-cycle problem.

Proof. Let div(S) = w(TSP(S)) denote the remote-
cycle diversity, and let O be a k-subset of S maximizing
div(O). We show that div(O) 6 3 divk(T ).

Consider a function f : O → T that maps each
vertex o ∈ O to its closest point in T . By the anti-
cover property of GMM, we have d(o, f(o)) 6 r. Let
R = {f(o) : o ∈ O} ⊆ T be the range of f , and let
TSP(R) be an optimal tour on R.

We build a graph G on the vertex set O ∪R, by first
adding to G the edges of TSP(R), and then, adding
for each o ∈ O, two copies of the edge (o, f(o)) to G.
Obviously, G is connected and all its vertices are even.
Therefore, G contains an Eulerian tour E. Let C be a
cycle obtained from E by short-cutting the vertices not
in O. Then,

w(TSP(O)) 6 w(C) 6 w(E)

6 w(TSP(R)) + 2kr

6 w(TSP(R)) + 2 divk(T ) 6 3 divk(T ),

where, the inequality w(TSP(R)) 6 divk(T ) holds be-
cause TSP(·) is a monotone increasing function—i.e.,
for any A ⊆ B, we have w(TSP(A)) 6 w(TSP(B)).
Moreover, the inequality kr 6 divk(T ) holds because
by the definition of r, there is a set Ti with k points
whose pairwise distance is at least r. �

Using similar arguments, we can obtain a factor-4 com-
posable coreset for the remote t-trees problem, and
a factor-5 composable coreset for the remote t-cycles
problem. Details are omitted in this version.

4 Lower Bound

In this section, we prove a general lower bound of 3 on
the approximation factor of composable coresets for var-
ious notions of diversity in a metric space. This implies
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Si
Sj

6∈ O

3

1

22 11

6∈ O

∈ O ∈ O

Figure 2: A lower bound example

the optimality of the composable coreset presented in
Section 3.3 for the remote-cycle problem. This also set-
tles an open problem posed by Indyk et al. [19] on the
existence of better composable coresets for the remote-
edge problem.

Theorem 8 Let (X, d) be a metric space, and Π be a
graph structure defined over induced subsets of X, such
that all graphs with Π structure on a k-point set have
the same number of edges. Then, the remote-Π problem
admits no α-composable coreset, for any α < 3.

Proof. Consider k sets Si ⊆ X, where each set has at
least k+ 1 points. Suppose that the optimal solution O
has exactly one point from each set Si. Let the edges
inside each Si, as well as the edges between non-optimal
points from different Si’s have weight 1, the edges con-
necting points in O have weight 3, and the remaining
edges have weight 2. (See Figure 2.) It is easy to verify
that this weight function is metric.

Let c be any function that computes a composable
coreset Ti = c(Si) for the remote-Π problem. Due to
edge weight symmetry inside each Si, we can assume
that Ti is a k-subset of Si \O. Therefore, the resulting
set T = ∪iTi will be a subset of S \ O, and hence,
includes only edges of weight 1. Since all edges between
the vertices of O have weight 3, the k-diversity of O will
be 3 times the k-diversity of T with respect to Π. �
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