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Core-Preserving Algorithms
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Abstract

We define a class of algorithms for constructing coresets
of (geometric) data sets, and show that algorithms in
this class can be dynamized efficiently in the insertion-
only (data stream) model. As a result, we show that for
a set of points in fixed dimensions, additive and mul-
tiplicative ε-coresets for the k-center problem can be
maintained in O(1) and O(k) time respectively, using a
data structure whose size is independent of the size of
the input. We also provide a faster streaming algorithm
for maintaining ε-coresets for fat extent-related prob-
lems such as diameter and minimum enclosing ball.

1 Introduction

The data stream model of computation has recently
attracted considerable interest due to growing applica-
tions involving massive data sets. In this model, data is
presented to the algorithm one by one as a stream over
time, and the algorithm must compute a function over
the stream in only one pass, using a limited amount of
storage.

The coreset framework is a fundamental tool for de-
signing algorithms in the data stream model as it al-
lows to compute a function approximately over the data
stream by keeping only a small-size “sketch” of the in-
put, called a coreset. Roughly speaking, a subset Q of
the input set P is called an ε-coreset of P with respect
to an optimization problem, if solving the optimization
problem on Q gives an ε-approximate solution to the
problem on the whole input set, P .

Several streaming algorithms have been developed
over the past few years for various geometric problems
using the notion of coresets [6, 9, 14]. For all these prob-
lems, coresets defined satisfy the following two proper-
ties:

a) If Q is an ε-coreset of P and Q′ is an ε-coreset of
P ′, then Q ∪Q′ is an ε-coreset of P ∪ P ′;

b) If Q is an ε-coreset of S and S is an δ-coreset of P ,
then Q is an (ε+ δ)-coreset of P .

Using the above two properties and based on the general
dynamization technique of Bentley and Saxe [5], Agar-
wal et al. [1] obtained the following result in the data
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stream model: If there is an ε-coreset of size f(ε) for
a problem, then one can solve the problem in the data
stream model using O(f(ε/ log2 n) log n) overall space,
where n is the number of elements received so far in the
stream.

In this paper, we show that for a special class of al-
gorithms which we call core-preserving, the space com-
plexity of the corresponding streaming algorithms can
be reduced to f(ε), using a simple bucketing scheme.
The importance of this result is that the dependency of
the space complexity to the input size, n, is removed.
(Such a result was previously known only for the ε-
coresets with respect to the extent measure [6, 4].) This
independency to the input size is of particular interest
as the input size in data streams is typically huge.

Our framework leads to improved algorithms for a
number of problems in the data stream model, some of
which are listed below. In the following, the input is
assumed to be a stream of points in Rd, where d is a
constant.

• (Additive) coreset for k-center: We show
that an additive ε-coreset for the k-center prob-
lem can be maintained in O(k/εd) space and O(1)
amortized update time, improving the previous
algorithm attributed to Har-peled [12] which re-
quires O(poly(k, 1/ε, log n)) space and similar time.
This is indeed the first streaming algorithm main-
taining an ε-coreset for this problem using a total
space independent of n.

• Multiplicative coreset for k-center: For the
k-center problem, we show that a multiplicative ε-
coreset (as defined in Section 2) can be maintained
in O(k!/εkd) space and O(k) amortized update
time. This is again the first streaming algorithm
for this problem whose space is independent of the
input size. This result immediately extends to a
variant of the k-clustering problem in which the
objective is to minimize the sum of the clusters
radii [7, 10].

• Coreset for fat measures: For “fat” measures
such as diameter and radius of the minimum en-
closing ball, one can easily maintain an ε-coreset by
just keeping the extreme points alongO(1/ε(d−1)/2)
directions. The time and space complexity of
this näıve algorithm is O(1/ε(d−1)/2). In two-
dimensions, using the recent algorithm of Agarwal
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and Yu [4], one can improve the update time from
O(
√

1/ε) to O(log(1/ε)). We show that the update
time in 2D can be further reduced to O(1) using our
framework. Moreover, the update time in three di-
mensions is reduced from O(1/ε) to O(log(1/ε)) us-
ing our algorithm. A slight improvement in higher
dimensions is implied as well.

2 Preliminaries

Let P be a set of points in Rd. A k-clustering of P
is a set B of k balls that completely cover P . We
denote by rad(b) the radius of a ball b, and define
rad(B) = maxb∈B rad(b). A δ-expansion of B is ob-
tained by increasing the radius of each ball of B by an
additive factor of δ.

Definition 1 A set Q ⊆ P is called an additive ε-
coreset of P for the k-center problem, if for every k-
clustering B of Q, P is covered by an (ε · rad(B))-
expansion of B.

We denote by (1 + ε)B a clustering obtained from B

by expanding each ball b ∈ B by a factor of ε · rad(b).

Definition 2 A set Q ⊆ P is called a multiplicative
ε-coreset of P for the k-center problem, if for every k-
clustering B of Q, P is covered by (1 + ε)B.

Note that by definition, a multiplicative ε-coreset for
k-center is also an additive ε-coreset. In the special case
of the minimum enclosing ball (the 1-center) problem,
both coreset definitions coincide.

Given two points p, q ∈ Rd, we say that p is smaller
than q, if p lies before q in the lexicographical order of
their coordinates. Throughout this paper, we denote by
bxc2 the largest (integer) power of 2 which is less than
or equal to x.

3 Core-Preserving Algorithms

In this section, we formally define the notion of core-
preserving algorithms, and show how it can be used to
efficiently maintain coresets in data streams.

Definition 3 Let A be an (offline) algorithm that for
every input set P , computes an ε-coreset A(P ) of P .
We call A core-preserving, if for every two sets R and
S, A(R ∪A(S)) is an ε-coreset of R ∪ S.

For R = ∅, the above condition implies that A(A(S))
is an ε-coreset of S. It means that repeated calls to
a core-preserving algorithm on a set S always returns
an ε-coreset of S. This is why the algorithm is called
“core-preserving”.

Theorem 1 Let A be a core-preserving algorithm that
for any set S, computes an ε-kernel of S of size
O(SA(ε)) in time O(α|S| + TA(ε)). Then for ev-
ery stream P , we can maintain an ε-coreset of P of
size O(SA(ε)) using O(SA(ε)) total space and O(α +
TA(ε)/SA(ε)) amortized time per update.

Proof. The function Insert described below inserts a
date item p into the stream P and returns an ε-kernel
of P . Initially, Q and R are empty sets.

Insert(p):

1: R← R ∪ {p}
2: if |R| > SA(ε) then

3: Q← A(R ∪Q)

4: R← ∅
5: return R ∪Q

The algorithm divides the input stream P into buck-
ets of size bSA(ε)c. At any time, only the last bucket is
active which is maintained in the set R. Let S = P \R.
The algorithm maintains an ε-coreset of S in Q. Upon
arrival of a new item p, it is first added to the active
bucket R, and if R is full, algorithm A is invoked to
compute an ε-coreset of R ∪ Q. The correctness of
the algorithm immediately follows from the facts that
A is core-preserving and Q is an ε-coreset of S; thus,
A(R ∪Q) is an ε-coreset of R ∪ S = P .

The total space used by the algorithm is bounded by
|Q|+ |R| = O(SA(ε)). Algorithm A is invoked once per
dSA(ε)e inserts. Since each call to A requires O(α|S|+
TA(ε)) time, the amortized update time per input is
O(α+ TA(ε)/SA(ε)). �

Theorem 1 yields two major improvements over
the general Bentley-Saxe method used in [1]: First
of all, the total space required is reduced from
O(SA(ε/ log2 n) log n) to O(SA(ε)), which is indepen-
dent of n. Secondly, the running time in the worst case
is reduced from O([αSA(ε/ log2 n)+TA(ε/ log2 n)] log n)
to only O(α|P |+ TA(ε)), again independent of n.

4 Additive Coreset for k-Center

In this section, we provide an efficient streaming
algorithm for maintaining an additive ε-coreset for the
k-center problem in fixed dimensions.

Lemma 2 There is a core-preserving algorithm that for
any given point set P ⊆ Rd, computes an additive ε-
coreset for the k-center problem of size O(k/εd) in time
O(|P |+ k/εd).
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Proof. Let r∗(P ) be the radius of the optimal k-
clustering of P , and r̃(P ) be a 2-approximation of r∗(P ),
i.e., r∗(P ) 6 r̃(P ) 6 2r∗(P ).

We first define some notations: Let Gα be a uniform
grid of side length α, and Xα(P ) be the set of all p ∈ P ,
such that p is the smallest point in a non-empty grid
cell of Gα. Let δ(P ) =

⌊
εr̃(P )/(4d1/2)

⌋
2
. Our core-

preserving algorithm is as follows: given a point set P ,
we first compute δ = δ(P ), and return Xδ(P ) as the
output. It is easy to observe that any k-clustering of
Xδ(P ), when expanded by a factor of εr∗(P ), covers all
the grid cells containing at least one point from P , and
therefore, Xδ(P ) is an ε-coreset of P [2, 13].

Let R and S be two arbitrary point sets in Rd, and
let Q be an ε-coreset of S computed by our algorithm.
To show that our algorithm is core-preserving, we need
to prove that for any input of the form P = R ∪Q, the
algorithm returns an ε-coreset of R ∪ S.

Let δ = δ(P ), σ = δ(S), and ρ = max{δ(P ), δ(S)}.
Obviously, Xρ(R ∪ S) is an ε-coreset of R ∪ S, be-
cause both P and S are subsets of R ∪ S, and hence,
max{r̃(P ), r̃(S)} 6 2r∗(R ∪ S). We claim that Xρ(R ∪
S) ⊆ Xδ(R∪Q). Since ρ/δ (resp., ρ/σ) is a non-negative
power of 2, every grid cell of Gδ (resp., Gσ) is completely
contained in a grid cell of Gρ (see Figure 1). Let p be
the smallest point of R ∪ S in a grid cell c of Gρ. Two
cases arise:

• p ∈ R: in this case, p is the smallest point of a
cell c′ ∈ Gδ (otherwise, there is a point p′ smaller
than p in c′, which is smaller than p in c as well, a
contradiction). Therefore, p ∈ Xδ(R ∪Q).

• p ∈ S: here, p is simultaneously the smallest point
of a cell c′ ∈ Gσ and a cell c′′ ∈ Gδ (otherwise, if
there is a smaller point p′ in either c′ or c′′, it would
be picked instead of p as the smallest point of c, a
contradiction). Since p is the smallest point in c′,
we have p ∈ Q, and since p is the smallest point of
c′′, we conclude that p ∈ Xδ(R ∪Q).

σ = ρδ

Figure 1: Additive coreset for k-center. The points of
R, Q, and S \Q are shown in white, black, and gray,
respectively.

Therefore, any p ∈ Xρ(R ∪ S) is contained in Xδ(R ∪
Q) = Xδ(P ), which completes the proof.

For the space complexity, note that every ball of an
optimal k-clustering of P intersects O(1/εd) grid cells
of Gδ. Therefore, the size of the resulting ε-coreset
is O(k/εd). We can use a linear-time implementa-
tion of Gonzalez’s algorithm [11, 12] to compute a 2-
approximation of r∗(P ), and therefore, the total run-
ning time required is O(|P |+ k/εd). �

Plugging Lemma 2 into the general framework provided
in Theorem 1, we immediately get the following result.

Theorem 3 Given a stream of points P in Rd, an ad-
ditive ε-coreset for the k-center problem of size O(k/εd)
can be maintained using O(k/εd) total space and O(1)
amortized time per update.

The above results also hold for any Lp metric: it just
suffices to replace d1/2 by d1/p in the definition of δ(P ).
The algorithm for multiplicative ε-coresets is provided
in the appendix.

5 Coresets for Fat Extent-Related Problems

Given a point set P ⊆ Rd, let B(P ) denote the minimum
axis-parallel hyperbox enclosing P . We denote by `(P )
the length of the longest side of B(P ). A subset Q ⊆ P
is called an additive ε-kernel of P , if for all u ∈ Sd−1,

w(Q, u) > w(P, u)− ε`(P ),

where w(P, u) = maxp,q∈P 〈p− q, u〉.
A function µ(·) defined over subsets of Rd is called

a fat measure, if there exists a constant α > 0 such
that for any additive ε-kernel Q of P , αµ(P ) 6 µ(Q) 6
µ(P ). Examples of fat measures are diameter, radius of
the minimum enclosing ball, and width of the smallest
enclosing hypercube. Obviously, if Q is an additive ε-
kernel of P and µ is a fat measure, then Q is an (ε/α)-
coreset of P with respect to µ.

Given a point set P ⊆ Rd, an additive ε-kernel of P
can be computed efficiently using an adaptation of the
simple grid-rounding method proposed in [6, 15] based
on Dudley’s construction [8]. The algorithm is described
in the following lemma.

Lemma 4 There is a core-preserving algorithm that for
every point set P ⊆ Rd, computes an additive ε-kernel
of P of size O(1/ε(d−1)/2) in O(|P | + 1/εd−(3/2)) time
for d > 2, or in O((|P | + 1/εd−2) log(1/ε)) time for
d > 3.

Proof. We assume w.l.o.g. that conv(P ) contains the
origin. Let B(P ) be the smallest hypercube centered at
the origin containing P . If `′(P ) denotes the side length
of B(P ), then we have `(P ) 6 `′(P ) 6 2`(P ).
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Let B = B(P ). By a simple scaling, we may assume
that B = [−1, 1]d. Let R be the set of points of a

√
ε-

grid over the boundary of the cube [−2, 2]d, and let pr
denote the nearest neighbor of a point r ∈ R in the set P
(see Figure 2). Let Q = {pr | r ∈ R}. Obviously, |Q| 6
|R| = O(1/ε(d−1)/2). Moreover, Q is an additive ε-kernel
of P with the argument provided below. The running
time follows immediately from the fast implementation
of Chan using the discrete nearest neighbor queries [6].

R

B

P

r

pr

Figure 2: Construction of additive ε-kernel.

Consider two arbitrary point sets R and S in Rd,
and let Q be an additive ε-kernel of S computed by
our algorithm. In order for our algorithm to be core-
preserving, we need to show that for any input of the
form P = R ∪ Q, the algorithm returns an additive ε-
kernel of R ∪ S.

We adapt the proof from [6]. Fix a unit vector
u ∈ Sd−1 and a point p ∈ R∪ S. There is a point r ∈ R

such that ∠(r−p, u) 6 arccos(1−ε/8) (See [6], Observa-
tion 2.3). If pr ∈ S, then by our construction there is a
point q ∈ Q such that ‖r−q‖ 6 (1+cε)‖r−pr‖ (details
omitted). If pr ∈ R, we simply set q = pr. Therefore,

‖r − q‖ 6 (1 + cε)‖r − p‖
⇒ (1− ε/8) 〈r − q, u〉 6 (1 + cε) 〈r − p, u〉
⇒ 〈r − q, u〉 − 3

√
dε/8 6 〈r − p, u〉+ 3c

√
dε

(since ‖r − p‖ 6 3
√
d and ‖r − q‖ 6 3

√
d)

⇒ 〈p, u〉 6 〈q, u〉+ 3
√
d(c+ 1/8).

It means that the projections of p and q in direction
u differ by at most O(ε). Since `(P ) > 1/2, we conclude
that 〈p− q, u〉 = O(ε)`(P ) in every direction u, which
completes the proof. �

Combining Lemma 4 with Theorem 1, we get the fol-
lowing result:

Theorem 5 Given a stream of points P in Rd and a
fat measure µ, an ε-coreset of P with respect to µ can be
maintained using O(1/ε(d−1)/2) total space and O(1 +
1/ε(d−3)/2 log(1/ε)) amortized time per update.

Remark. Theorem 5 shows that the natural approach
taken by previous streaming algorithms [6, 4] to main-
tain coresets in different directions is not necessarily
the best for fat measures. For example, the best pre-
vious streaming algorithm for diamater and minimum
enclosing ball in the plane due to Agarwal and Yu [4]
requires O(

√
1/ε) space and O(log(1/ε)) update time,

while Theorem 5 implies an algorithm with the same
space complexity and only O(1) update time.

6 Conclusions

In this paper, we introduced the notion of core-
preserving algorithms, and presented a general frame-
work based on this notion to efficiently maintain ε-
coresets for a number of fundamental geometric prob-
lems, including k-center (in both additive and multi-
plicative forms), diameter, and minimum enclosing ball.

We believe that our framework will easily find appli-
cations in other geometric (and non-geometric) prob-
lems. For example, using our framework to maintain ε-
coresets of fat sets as a subroutine, we have recently suc-
ceeded to obtain a streaming algorithm for maintaining
ε-coresets with respect to the extent measure using near
optimal space [16], which leads to improved streaming
algorithms for a wide variety of geometric optimization
problems, including width, minimum enclosing cylinder,
minimum-width enclosing annulus, minimum-width en-
closing cylindrical shell, etc.
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A Multiplicative Coreset for k-Center

Here, we provide an efficient streaming algorithm to
maintain a multiplicative ε-coreset for the k-center
problem in fixed dimensions.

Lemma 6 There is a core-preserving algorithm that for
any given point set P ⊆ Rd, computes a multiplicative
ε-coreset for the k-center problem of size O(k!/εkd) in
time O(k|P |+ k!/εkd).

Proof. It is known that constructing a multiplicative
ε-coreset for the k-center problem reduces to the prob-
lem of finding additive ε-coresets for k-center [3, 13].
Let r∗(P ), r̃(P ), δ(P ), Gδ, and Xδ(P ) be as defined
in Section 4. The algorithm for computing multiplica-
tive ε-coreset is as follows: We first compute δ = δ(P ),
build a uniform grid Gδ, and extract an additive ε-
coreset Xδ(P ) just like in Section 4. Let C be the set
of non-empty grid cells in Gδ. For every cell c ∈ C, we
recursively compute a multiplicative ε-coreset Q(c) of
P ∩ c with respect to (k − 1)-center. The set Q(P ) =
Xδ(P ) ∪ (∪c∈CQ(c)) is a multiplicative ε-coreset of P
with the following simple argument.

Let B be a k-clustering of Q(P ), and let b be the
largest ball in B. Consider a non-empty cell c in C.
If b intersects c, then an ε-expansion of b by a factor of
ε ·rad(b) = εr∗(P ) completely covers c. If b∩c = ∅, then
at most k − 1 balls of B intersect c, and since Q(c) is a
multiplicative ε-coreset of P ∩ c with respect to (k− 1)-
center, expanding each of the k − 1 balls by a factor of
ε will cover the whole points in c by induction.

Now, we show that our algorithm is core-preserving.
Consider two arbitrary point sets R and S in Rd, and
let Q be a multiplicative ε-coreset of S computed by
our algorithm. We prove that for any input of the form
P = R ∪ Q, the algorithm returns a multiplicative ε-
coreset of R ∪ S.

Our algorithm computes the coreset in k layers. In
the topmost layer (layer k), an additive ε-coreset for
k-center is computed, and in any other layer j (1 6
j < k), the algorithm computes O(Πk

i=j+1i/ε
d) addi-

tive ε-coresets with respect to j-center, each of size
O(j/εd). Let Qj(P ) denote the union of all addi-
tive ε-coresets computed in the jth layer. Obviously,
Q(P ) = ∪kj=1Qj(P ).

Let r∗j (P ), r̃j(P ), δj(P ) be the j-center analogous
of the notations defined earlier (if P = ∅, we define
δj(P ) to be 0). Let δ = δk(P ), σ = δk(S), and ρ =
max{δ, σ}. As shown in Lemma 2, Xρ(R ∪ S) is an
additive ε-coreset ofR∪S, andXρ(R∪S) ⊆ Xδ(R∪Q) =
Qk(P ). Suppose w.l.o.g. that δ > σ (the other case is
analogous). Suppose that there are n non-empty cells
c1, . . . , cn in Gδ. Fix one of these celss, say ci. There
are m = (ρ/σ)d cells of side length σ in ci which we
denote by ci1, . . . , cim. Define δi = δk−1(P ∩ ci), and
σij = δk−1(S ∩ cij) for 1 6 j 6 m (see Figure 3).

σ

δ = ρ

ci

σi4

σi1

δi

σi2 = 0

σi3 = 0

Figure 3: Multiplicative coreset for k-center. The points
of R, Q, and S\Q are shown in white, black, and gray,
respectively.

Let ρi = max{δi, σi1, . . . , σim}. It is easy to verify
that Xρi((R ∪ S) ∩ ci) is an additive ε-coreset of (R ∪
S) ∩ ci. Moreover, we can show that Xρi((R ∪ S) ∩
ci) ⊆ Xδi((R ∪Q) ∩ ci) = Xδi(P ∩ ci), by an argument
similar to the one used in Lemma 2. Let Q′k−1(R∪S) =
∪ni=1Xρi((R∪S)∩ci). Since Qk−1(P ) = ∪ni=1Xδi(P∩ci),
we have Q′k−1(R∪S) ⊆ Qk−1(P ). We define Q′j(R∪S) in
a similar manner for all 1 6 j 6 k, and set Q′(R∪ S) =
∪kj=1Q

′
j(R∪S). Obviously, Q′(R∪S) is a multiplicative

ε-coreset of R ∪ S. Moreover, Q′(R ∪ S) ⊆ Q(P ), which
completes the proof.

It is easy to observe that the resulting coreset has
size O(k!/εkd). In each level j, we need to compute a
2-approximation of the j-center clustering for the points
lied in each non-empty cell separately. Since the total
number of points in each layer is |P |, and the approxi-
mation algorithm used is linear, the total time needed
for this step in each layer is O(|P |). Therefore, the total
running time is O(k|P |+ k!/εkd). �

Note that in the above construction, Qi(P ) is a subset of
Qi−1(P ) for all 1 < i 6 k. Therefore, we can just extract
the additive ε-coresets in layer 1, and discard any other
additive coresets computed in the intermediate layers.

Theorem 7 Given a stream of points P in Rd, a multi-
plicative ε-coreset for the k-center problem can be main-
tained using O(k!/εkd) total space and O(k) amortized
time per update.

Proof. This is a direct corollary of Lemma 6 and The-
orem 1. �

Remark. A variant of the k-clustering problem has
been recently studied in the literature in which the ob-
jective is to minimize the sum of the clusters radii [7, 10].
Theorem 7 immediately yields an efficient streaming
algorithm to maintain an ε-coreset with respect to this
clustering problem as well.


