CCCG 2008, Montréal, Québec, August 13-15, 2008

Core-Preserving Algorithms

Hamid Zarrabi-Zadeh*

Abstract

We define a class of algorithms for constructing coresets
of (geometric) data sets, and show that algorithms in
this class can be dynamized efficiently in the insertion-
only (data stream) model. As a result, we show that for
a set of points in fixed dimensions, additive and mul-
tiplicative e-coresets for the k-center problem can be
maintained in O(1) and O(k) time respectively, using a
data structure whose size is independent of the size of
the input. We also provide a faster streaming algorithm
for maintaining e-coresets for fat extent-related prob-
lems such as diameter and minimum enclosing ball.

1 Introduction

The data stream model of computation has recently
attracted considerable interest due to growing applica-
tions involving massive data sets. In this model, data is
presented to the algorithm one by one as a stream over
time, and the algorithm must compute a function over
the stream in only one pass, using a limited amount of
storage.

The coreset framework is a fundamental tool for de-
signing algorithms in the data stream model as it al-
lows to compute a function approximately over the data
stream by keeping only a small-size “sketch” of the in-
put, called a coreset. Roughly speaking, a subset @ of
the input set P is called an e-coreset of P with respect
to an optimization problem, if solving the optimization
problem on @ gives an e-approximate solution to the
problem on the whole input set, P.

Several streaming algorithms have been developed
over the past few years for various geometric problems
using the notion of coresets [6, 9, 14]. For all these prob-
lems, coresets defined satisfy the following two proper-
ties:

a) If @ is an e-coreset of P and Q' is an e-coreset of
P’, then Q U Q' is an e-coreset of P U P’;

b) If @Q is an e-coreset of S and S is an J-coreset of P,
then @ is an (e + J)-coreset of P.

Using the above two properties and based on the general
dynamization technique of Bentley and Saxe [5], Agar-
wal et al. [1] obtained the following result in the data

*School of Computer Science, University of Waterloo, Water-
loo, Ont. N2L 3G1, Canada; hzarrabi@uwaterloo.ca

stream model: If there is an e-coreset of size f(e) for
a problem, then one can solve the problem in the data
stream model using O(f(g/log®n)logn) overall space,
where n is the number of elements received so far in the
stream.

In this paper, we show that for a special class of al-
gorithms which we call core-preserving, the space com-
plexity of the corresponding streaming algorithms can
be reduced to f(e), using a simple bucketing scheme.
The importance of this result is that the dependency of
the space complexity to the input size, n, is removed.
(Such a result was previously known only for the e-
coresets with respect to the extent measure [6, 4].) This
independency to the input size is of particular interest
as the input size in data streams is typically huge.

Our framework leads to improved algorithms for a
number of problems in the data stream model, some of
which are listed below. In the following, the input is
assumed to be a stream of points in R?, where d is a
constant.

e (Additive) coreset for k-center: We show
that an additive e-coreset for the k-center prob-
lem can be maintained in O(k/e?) space and O(1)
amortized update time, improving the previous
algorithm attributed to Har-peled [12] which re-
quires O(poly(k, 1/¢,logn)) space and similar time.
This is indeed the first streaming algorithm main-
taining an e-coreset for this problem using a total
space independent of n.

e Multiplicative coreset for k-center: For the
k-center problem, we show that a multiplicative &-
coreset (as defined in Section 2) can be maintained
in O(k!/e*) space and O(k) amortized update
time. This is again the first streaming algorithm
for this problem whose space is independent of the
input size. This result immediately extends to a
variant of the k-clustering problem in which the
objective is to minimize the sum of the clusters
radii [7, 10].

e Coreset for fat measures: For “fat” measures
such as diameter and radius of the minimum en-
closing ball, one can easily maintain an e-coreset by
just keeping the extreme points along O(1/g(4=1)/2)
directions. The time and space complexity of
this naive algorithm is O(1/¢(@~1/2), In two-
dimensions, using the recent algorithm of Agarwal

20th Canadian Conference on Computational Geometry, 2008

and Yu [4], one can improve the update time from
O(y/1/¢) to O(log(1/¢)). We show that the update
time in 2D can be further reduced to O(1) using our
framework. Moreover, the update time in three di-
mensions is reduced from O(1/¢) to O(log(1/€)) us-
ing our algorithm. A slight improvement in higher
dimensions is implied as well.

2 Preliminaries

Let P be a set of points in RY. A k-clustering of P
is a set B of k balls that completely cover P. We
denote by rad(b) the radius of a ball b, and define
rad(B) = maxpep rad(b). A J-expansion of B is ob-
tained by increasing the radius of each ball of B by an
additive factor of §.

Definition 1 A set Q C P is called an additive e-
coreset of P for the k-center problem, if for every k-
clustering B of @, P is covered by an (e - rad(B))-
expansion of B.

We denote by (1 4 €)B a clustering obtained from B
by expanding each ball b € B by a factor of € - rad(b).

Definition 2 A set Q C P is called a multiplicative
e-coreset of P for the k-center problem, if for every k-
clustering B of @, P is covered by (1 + ¢)B.

Note that by definition, a multiplicative e-coreset for
k-center is also an additive e-coreset. In the special case
of the minimum enclosing ball (the 1-center) problem,
both coreset definitions coincide.

Given two points p,q € R?, we say that p is smaller
than g, if p lies before ¢ in the lexicographical order of
their coordinates. Throughout this paper, we denote by
|z |, the largest (integer) power of 2 which is less than
or equal to .

3 Core-Preserving Algorithms

In this section, we formally define the notion of core-
preserving algorithms, and show how it can be used to
efficiently maintain coresets in data streams.

Definition 3 Let A be an (offline) algorithm that for
every input set P, computes an e-coreset A(P) of P.
We call A core-preserving, if for every two sets R and
S, A(RUA(S)) is an e-coreset of RU S.

For R = (), the above condition implies that A(A(S))
is an e-coreset of S. It means that repeated calls to
a core-preserving algorithm on a set S always returns
an e-coreset of S. This is why the algorithm is called
“core-preserving”.

Theorem 1 Let A be a core-preserving algorithm that
for any set S, computes an e-kernel of S of size
O(8.4(e)) in time O(a|lS| + Ta(e)). Then for ev-
ery stream P, we can maintain an e-coreset of P of
size O(84(€)) using O(84(e)) total space and O(a +
Ta(e)/8.4(e)) amortized time per update.

Proof. The function INSERT described below inserts a
date item p into the stream P and returns an e-kernel
of P. Initially, @ and R are empty sets.

INSERT(p):

1: R+ RU{p}

2: if |R| > 84(¢) then
3: QR+ ARUQ®)
4 R+ 0

5: return RU Q

The algorithm divides the input stream P into buck-
ets of size |84(¢)]. At any time, only the last bucket is
active which is maintained in the set R. Let S = P\R.
The algorithm maintains an e-coreset of S in). Upon
arrival of a new item p, it is first added to the active
bucket R, and if R is full, algorithm A is invoked to
compute an e-coreset of R U (). The correctness of
the algorithm immediately follows from the facts that
A is core-preserving and @ is an e-coreset of S; thus,
A(RUQ) is an e-coreset of RUS = P.

The total space used by the algorithm is bounded by
|Q| + |R| = O(8.4(¢)). Algorithm A is invoked once per
[8.4(¢)] inserts. Since each call to A requires O(al|S| +
T4(e)) time, the amortized update time per input is
O(a+Ta(e)/8ale)). O

Theorem 1 yields two major improvements over
the general Bentley-Saxe method used in [1]: First
of all, the total space required is reduced from
O(8.4(g/log®n)logn) to O(84(e)), which is indepen-
dent of n. Secondly, the running time in the worst case
is reduced from O([a8 4 (¢/ log® n)+T 4 (g/ log® n)] log n)
to only O(a|P| + T 4(¢)), again independent of n.

4 Additive Coreset for k-Center

In this section, we provide an efficient streaming
algorithm for maintaining an additive e-coreset for the
k-center problem in fixed dimensions.

Lemma 2 There is a core-preserving algorithm that for
any given point set P C R?, computes an additive -
coreset for the k-center problem of size O(k/e?) in time
O(|P| + k/e?).

CCCG 2008, Montréal, Québec, August 13-15, 2008

Proof. Let r*(P) be the radius of the optimal k-
clustering of P, and 7(P) be a 2-approximation of r*(P),
ie., r*(P) < 7(P) < 2r*(P).

We first define some notations: Let G, be a uniform
grid of side length «, and X, (P) be the set of all p € P,
such that p is the smallest point in a non-empty grid
cell of G,. Let §(P) = LEf(P)/(Zldl/Q)Jz. Our core-
preserving algorithm is as follows: given a point set P,
we first compute § = 6(P), and return Xs(P) as the
output. It is easy to observe that any k-clustering of
Xs(P), when expanded by a factor of er*(P), covers all
the grid cells containing at least one point from P, and
therefore, X;5(P) is an e-coreset of P [2, 13].

Let R and S be two arbitrary point sets in R?, and
let @ be an e-coreset of S computed by our algorithm.
To show that our algorithm is core-preserving, we need
to prove that for any input of the form P = RU @, the
algorithm returns an e-coreset of RU S.

Let § = 0(P), 0 = 0(5), and p = max{d§(P),d(9)}.
Obviously, X,(R U S) is an e-coreset of R U S, be-
cause both P and S are subsets of R U S, and hence,
max{7(P),7(S)} < 2r*(RUS). We claim that X,(RU
S) C X5(RUQ). Since p/d (resp., p/o) is a non-negative
power of 2, every grid cell of G (resp., §,) is completely
contained in a grid cell of G, (see Figure 1). Let p be
the smallest point of RU S in a grid cell ¢ of §,. Two
cases arise:

e p € R: in this case, p is the smallest point of a
cell ¢ € G5 (otherwise, there is a point p’ smaller
than p in ¢, which is smaller than p in c as well, a
contradiction). Therefore, p € Xs(RU Q).

e p € S: here, p is simultaneously the smallest point
of a cell ¢ € G, and a cell ¢/ € G5 (otherwise, if
there is a smaller point p’ in either ¢’ or ¢”, it would
be picked instead of p as the smallest point of ¢, a
contradiction). Since p is the smallest point in ¢/,
we have p € @), and since p is the smallest point of
¢’ we conclude that p € X5(RU Q).

,,,,,,,,,,,,,,,,,,,,,,,,

,,,,,,,,,,,,,,,,,,,,,,,,

Figure 1: Additive coreset for k-center. The points of
R, Q, and S\ @ are shown in white, black, and gray,
respectively.

Therefore, any p € X,(R U S) is contained in X;(R U
Q) = X5(P), which completes the proof.

For the space complexity, note that every ball of an
optimal k-clustering of P intersects O(1/e?) grid cells
of G5. Therefore, the size of the resulting e-coreset
is O(k/e?). We can use a linear-time implementa-
tion of Gonzalez’s algorithm [11, 12] to compute a 2-
approximation of r*(P), and therefore, the total run-
ning time required is O(|P| + k/&%). O

Plugging Lemma 2 into the general framework provided
in Theorem 1, we immediately get the following result.

Theorem 3 Given a stream of points P in R?, an ad-
ditive e-coreset for the k-center problem of size O(k/e?)
can be maintained using O(k/e?) total space and O(1)
amortized time per update.

The above results also hold for any L, metric: it just
suffices to replace d'/2 by d'/? in the definition of §(P).
The algorithm for multiplicative e-coresets is provided
in the appendix.

5 Coresets for Fat Extent-Related Problems

Given a point set P C R%, let B(P) denote the minimum
axis-parallel hyperbox enclosing P. We denote by ¢(P)
the length of the longest side of B(P). A subset @ C P
is called an additive e-kernel of P, if for all u € S%1,

w(Q,u) = w(P,u) —el(P),

where w(P, u) = max, ¢ep (P — ¢, u).

A function p(-) defined over subsets of R is called
a fat measure, if there exists a constant a > 0 such
that for any additive e-kernel @ of P, au(P) < u(Q) <
wu(P). Examples of fat measures are diameter, radius of
the minimum enclosing ball, and width of the smallest
enclosing hypercube. Obviously, if @ is an additive e-
kernel of P and p is a fat measure, then @ is an (¢/«a)-
coreset of P with respect to p.

Given a point set P C R?, an additive e-kernel of P
can be computed efficiently using an adaptation of the
simple grid-rounding method proposed in [6, 15] based
on Dudley’s construction [8]. The algorithm is described
in the following lemma.

Lemma 4 There is a core-preserving algorithm that for
every point set P C RY, computes an additive e-kernel
of P of size O(1/e\@=1/2) in O(|P| + 1/ G/2)) time
for d = 2, or in O((|P| + 1/e%72)log(1/¢)) time for
d=>3.

Proof. We assume w.l.o.g. that conv(P) contains the
origin. Let B(P) be the smallest hypercube centered at
the origin containing P. If ¢/(P) denotes the side length
of B(P), then we have ¢(P) < ¢'(P) < 2¢(P).

20th Canadian Conference on Computational Geometry, 2008

Let B = B(P). By a simple scaling, we may assume
that B = [—~1,1]%. Let R be the set of points of a /e-
grid over the boundary of the cube [—2,2]¢, and let p,
denote the nearest neighbor of a point » € R in the set P
(see Figure 2). Let Q = {p, | r € R}. Obviously, |Q| <
|R| = O(1/£4=1)/2). Moreover, Q is an additive e-kernel
of P with the argument provided below. The running
time follows immediately from the fast implementation
of Chan using the discrete nearest neighbor queries [6].

Figure 2: Construction of additive e-kernel.

Consider two arbitrary point sets R and S in R?,
and let @ be an additive e-kernel of S computed by
our algorithm. In order for our algorithm to be core-
preserving, we need to show that for any input of the
form P = RU @, the algorithm returns an additive e-
kernel of RU S.

We adapt the proof from [6]. Fix a unit vector
u € S%! and a point p € RUS. There is a point r € R
such that Z(r—p,u) < arccos(1—¢/8) (See [6], Observa-
tion 2.3). If p, € S, then by our construction there is a
point ¢ € @ such that ||r —q|| < (1+ce)|r—p,|| (details
omitted). If p,. € R, we simply set ¢ = p,.. Therefore,

Ir = qll < (1 +ce)llr —pll
= (1—-¢/8)(r—qu) <(1+4+ce){r—p,u)
= (r—q,u)—3Vde/8 < (r —p,u) + 3cVde
(since ||r — p|| < 3V/d and ||r — ¢|| < 3V/d)
= (p,u) < (g,u) +3Vd(c+1/8).

It means that the projections of p and ¢ in direction
u differ by at most O(g). Since £(P) > 1/2, we conclude
that (p — ¢q,u) = O(e)¢(P) in every direction u, which
completes the proof. O

Combining Lemma 4 with Theorem 1, we get the fol-
lowing result:

Theorem 5 Given a stream of points P in R? and a
fat measure p, an e-coreset of P with respect to p can be
maintained using O(1/e4=1/2) total space and O(1 +
1/e(@=3)/210g(1/¢)) amortized time per update.

Remark. Theorem 5 shows that the natural approach
taken by previous streaming algorithms [6, 4] to main-
tain coresets in different directions is not necessarily
the best for fat measures. For example, the best pre-
vious streaming algorithm for diamater and minimum
enclosing ball in the plane due to Agarwal and Yu [4]
requires O(+/1/¢) space and O(log(1/¢)) update time,
while Theorem 5 implies an algorithm with the same
space complexity and only O(1) update time.

6 Conclusions

In this paper, we introduced the notion of core-
preserving algorithms, and presented a general frame-
work based on this notion to efficiently maintain e-
coresets for a number of fundamental geometric prob-
lems, including k-center (in both additive and multi-
plicative forms), diameter, and minimum enclosing ball.

We believe that our framework will easily find appli-
cations in other geometric (and non-geometric) prob-
lems. For example, using our framework to maintain e-
coresets of fat sets as a subroutine, we have recently suc-
ceeded to obtain a streaming algorithm for maintaining
e-coresets with respect to the extent measure using near
optimal space [16], which leads to improved streaming
algorithms for a wide variety of geometric optimization
problems, including width, minimum enclosing cylinder,
minimum-width enclosing annulus, minimum-width en-
closing cylindrical shell, etc.

Acknowledgments The author would like to thank
Timothy M. Chan for his helpful comments.

References

[1] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan.
Approximating extent measures of points. J. ACM,
51(4):606-635, 2004.

. K. arwal an . M. Procopiuc. Exact and ap-

2] P. K. Ag l and C. M. P i E d
proximation algorithms for clustering. Algorithmica,
33(2):201-226, 2002.

[3] P. K. Agarwal, C. M. Procopiuc, and K. R. Varadara-
jan. Approximation algorithms for a k-line center. Al-
gorithmica, 42(3-4):221-230, 2005.

[4] P. K. Agarwal and H. Yu. A space-optimal data-stream
algorithm for coresets in the plane. In Proc. 23rd Annu.
ACM Sympos. Comput. Geom., pages 1-10, 2007.

[5] J. L. Bentley and J. B. Saxe. Decomposable search-
ing problems I: Static-to-dynamic transformations. J.
Algorithms, 1:301-358, 1980.

[6] T. M. Chan. Faster core-set constructions and data
stream algorithms in fixed dimensions. Comput. Geom.
Theory Appl., 35(1-2):20-35, 2006.

[7] M. Charikar and R. Panigrahy. Clustering to minimize
the sum of cluster diameters. J. Comput. Systems Sci.,
68:417-441, Mar. 2004.

CCCG 2008, Montréal, Québec, August 13-15, 2008

(8]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

R. M. Dudley. Metric entropy of some classes of sets
with differentiable boundaries. J. Approz. Theory,
10:227-236, 1974.

G. Frahling and C. Sohler. Coresets in dynamic geomet-
ric data streams. In Proc. 37th Annu. ACM Sympos.
Theory Comput., pages 209-217, 2005.

M. Gibson, G. Kanade, E. Krohn, I. A. Pirwani, and
K. Varadarajan. On clustering to minimize the sum
of radii. In Proc. 19th ACM-SIAM Sympos. Discrete
Algorithms, pages 819-825, 2008.

T. Gonzalez. Clustering to minimize the maximum in-
tercluster distance. Theoret. Comput. Sci., 38:293-306,
1985.

S. Har-Peled. Clustering motion. Discrete Comput.
Geom., 31(4):545-565, 2004.

S. Har-Peled. No Coreset, No Cry. In Proc. 24th Conf.
Found. Soft. Tech. and Theoret. Comput. Sci., pages
324-335, 2004.

S. Har-Peled and S. Mazumdar. On coresets for k-
means and k-median clustering. In Proc. 36th Annu.
ACM Sympos. Theory Comput., pages 291-300, 2004.

H. Yu, P. K. Agarwal, R. Poreddy, and K. R. Varadara-
jan. Practical methods for shape fitting and kinetic data
structures using core sets. In Proc. 20th Annu. ACM
Sympos. Comput. Geom., pages 263-272, 2004.

H. Zarrabi-Zadeh. An almost space-optimal streaming
algorithm for coresets in fixed dimensions. In Proc. 16th
Annu. European Sympos. Algorithms, 2008, to appear.

20th Canadian Conference on Computational Geometry, 2008

A Multiplicative Coreset for k-Center

Here, we provide an efficient streaming algorithm to
maintain a multiplicative e-coreset for the k-center
problem in fixed dimensions.

Lemma 6 There is a core-preserving algorithm that for
any given point set P C R%, computes a multiplicative
e-coreset for the k-center problem of size O(k!/e*?) in
time O(k|P| + k!/k9).

Proof. It is known that constructing a multiplicative
e-coreset for the k-center problem reduces to the prob-
lem of finding additive e-coresets for k-center [3, 13].
Let r*(P), 7(P), §(P), G5, and Xs5(P) be as defined
in Section 4. The algorithm for computing multiplica-
tive e-coreset is as follows: We first compute § = §(P),
build a uniform grid Gs, and extract an additive e-
coreset Xs5(P) just like in Section 4. Let € be the set
of non-empty grid cells in Gs. For every cell ¢ € €, we
recursively compute a multiplicative e-coreset Q(c) of
P N ¢ with respect to (k — 1)-center. The set Q(P) =
Xs(P) U (UeeeQ(c)) is a multiplicative e-coreset of P
with the following simple argument.

Let B be a k-clustering of Q(P), and let b be the
largest ball in B. Consider a non-empty cell ¢ in C.
If b intersects ¢, then an e-expansion of b by a factor of
e-rad(b) = er*(P) completely covers c. If bNec = (), then
at most k& — 1 balls of B intersect ¢, and since Q(c) is a
multiplicative e-coreset of PN ¢ with respect to (k—1)-
center, expanding each of the £ — 1 balls by a factor of
¢ will cover the whole points in ¢ by induction.

Now, we show that our algorithm is core-preserving.
Consider two arbitrary point sets R and S in R, and
let @ be a multiplicative e-coreset of S computed by
our algorithm. We prove that for any input of the form
P = RUQ, the algorithm returns a multiplicative e-
coreset of RU S.

Our algorithm computes the coreset in k layers. In
the topmost layer (layer k), an additive e-coreset for
k-center is computed, and in any other layer j (1 <
j < k), the algorithm computes O(Hf:jﬂi/sd) addi-
tive e-coresets with respect to j-center, each of size
O(j/e?). Let Q;(P) denote the union of all addi-
tive e-coresets computed in the jth layer. Obviously,
(P) = Uh_,9;(P).

Let rj(P), 7;(P), 6;(P) be the j-center analogous
of the notations defined earlier (if P = @, we define
9;(P) to be 0). Let § = 6,(P), 0 = 0x(S), and p =
max{d,o}. As shown in Lemma 2, X,(R U S) is an
additive e-coreset of RUS, and X,(RUS) C X;(RUQ) =
Qi(P). Suppose w.lo.g. that 0 > o (the other case is
analogous). Suppose that there are n non-empty cells
c1,...,¢, in Gs. Fix one of these celss, say ¢;. There
are m = (p/o)? cells of side length o in ¢; which we
denote by ¢;1,...,Cim. Define §; = dp_1(P N¢;), and
0ij = 0g—1(S Ne;j) for 1 < j < m (see Figure 3).

Ci

T e T el

o! Oi4

Figure 3: Multiplicative coreset for k-center. The points
of R, @, and S\(Q are shown in white, black, and gray,
respectively.

Let p; = max{d;,0i1,...,0im}. It is easy to verify
that X,,((RUS) N¢;) is an additive e-coreset of (R U
S) N ¢;. Moreover, we can show that X,,((RUS) N
¢i) € X5, ((RUQ)N¢;) = Xs,(PN¢;), by an argument
similar to the one used in Lemma 2. Let Q}_,(RUS) =
U, X,, ((RUS)N¢;). Since Qp_1(P) = U, X5, (PNe;),
we have Q) | (RUS) C Q;_1(P). We define Q’;(RUS) in
a similar manner for all 1 < j < k, and set Q'(RUS) =
Uk_ Q5(RUS). Obviously, Q'(RUS) is a multiplicative
e-coreset of RU S. Moreover, Q'(RU S) C Q(P), which
completes the proof.

It is easy to observe that the resulting coreset has
size O(k!/e*?). In each level j, we need to compute a
2-approximation of the j-center clustering for the points
lied in each non-empty cell separately. Since the total
number of points in each layer is |P|, and the approxi-
mation algorithm used is linear, the total time needed
for this step in each layer is O(|P|). Therefore, the total
running time is O(k|P| + k!/e¥?). O

Note that in the above construction, Q;(P) is a subset of
Q;_1(P) forall 1 < i < k. Therefore, we can just extract
the additive e-coresets in layer 1, and discard any other
additive coresets computed in the intermediate layers.

Theorem 7 Given a stream of points P in R?, a multi-
plicative e-coreset for the k-center problem can be main-
tained using O(k!/e*?) total space and O(k) amortized
time per update.

Proof. This is a direct corollary of Lemma 6 and The-
orem 1. O

Remark. A variant of the k-clustering problem has
been recently studied in the literature in which the ob-
jective is to minimize the sum of the clusters radii [7, 10].
Theorem 7 immediately yields an efficient streaming
algorithm to maintain an e-coreset with respect to this
clustering problem as well.

