
Finding Paths with Minimum Shared Edges?

Masoud T. Omran1, Jörg-Rüdiger Sack1, and Hamid Zarrabi-Zadeh1

School of Computer Science, Carleton University, Ottawa, Ontario K1S 5B6, Canada.
Email: {mtomran,sack,zarrabi}@scs.carleton.ca

Abstract. Motivated by a security problem in geographic information
systems, we study the following graph theoretical problem: given a graph
G, two special nodes s and t in G, and a number k, find k paths from
s to t in G so as to minimize the number of edges shared among the
paths. This is a generalization of the well-known disjoint paths problem.
While disjoint paths can be computed efficiently, we show that finding
paths with minimum shared edges is NP-hard. Moreover, we show that
it is even hard to approximate the minimum number of shared edges to

within a factor of 2log1−ε n, for any constant ε > 0. On the positive side,
we show that there exists a k-approximation algorithm for the problem,
using an adaption of a network flow algorithm. We design some heuristics
to improve the quality of the output, and provide empirical results.

1 Introduction

In this paper, we address a problem motivated by a security assurance demand
in a geographic information system (GIS) setting. The problem set arose in the
following context. Suppose that a security organization is hired to do planning
for a VIP who wishes to travel safely between two locations. Given the secu-
rity concerns, k paths are determined in pre-trip planning and then, just prior
to actual travel, randomly one path among the k paths is chosen. The fewer
edges that are shared among the pre-trip paths, the higher the level of perceived
security. However, if it becomes unavoidable to share edges among the paths,
guards are employed on those shared edges. Once a guard has been employed
for a particular edge, he/she protects all paths that use this edge. Since guards
are expensive, we want to reduce their total number. We refer to this problem
as Minimum Shared Edges, or MSE for short. The problem is formally defined
as follows:

Problem 1 (Minimum Shared Edges (MSE)). Given a graph G = (V,E), two
special nodes s, t ∈ V , and an integer k > 0, find a set P of k paths from s to
t in G so as to minimize c(P) =

∑
e∈E λ(e), where λ(e) = 0 if e is used in at

most one path of P , and λ(e) = 1 otherwise. An edge e with λ(e) = 1 is called
a shared edge.

? Research supported by NSERC, HPCVL, and SUN Microsystems.

π1 = 〈e1, e4, e10〉
e1

e2

e3

e4

e5

e6

e7

e8
e9

e10

e11

π2 = 〈e2, e7, e11〉
π3 = 〈e2, e6, e8, e10〉
π4 = 〈e2, e3, e4, e10〉
π5 = 〈e2, e7, e9, e10〉
π6 = 〈e2, e6, e5, e4, e10〉

s t

Fig. 1. A graph G with six possible (s, t)-paths, denoted by π1 to π6.

We assume, without loss of generality, that the input graph is directed. Fig-
ure 1 illustrates an instance of the MSE problem on a sample graph. For k = 2,
the minimum possible number of shared edges is zero, attained by two paths π1
and π2. For k = 3, the minimum number of shared edges is two, realized by the
set {π1, π2, π3}. Any other set of three paths leads to a higher number of shared
edges.

For the special case where the number of shared edges is required to be zero,
the MSE problem is reduced to the “disjoint paths” problem which can be solved
in polynomial time using standard maximum flow algorithms. In particular, one
can use Goldberg and Rao’s binary blocking flow algorithm [7] to find k dis-
joint paths in a graph G = (V,E) in O(mmin(n2/3,m1/2) log(n2/m) log k) time,
where n = |V | and m = |E|. An improved algorithm is provided for the special
case of k = 2 [12]. See also [8] for the related problem of finding “shortest”
disjoint paths in a graph.

A closely related problem studied in the context of communication networks
is the so-called “k-best paths” problem [3, 11]. In this problem, the objective
is to find a set P of k paths with minimum edge sharability, which is defined
analogously to Problem 1, with the only difference that here, for each edge e,
λ(e) = 0 if e is used in at most one path of P , otherwise λ(e) is equal to the
number of paths containing e minus 1. As shown in [10, 13], the k-best paths
problem is polynomially solvable using a minimum-cost flow algorithm.

Despite its close similarity to the k-best paths problem, the minimum shared
edges problem studied in this paper turns out to be substantially more challeng-
ing. In particular, we prove that the minimum shared edges problem is NP-hard.
Moreover, we show that the problem admits no 2log

1−ε n-factor approximation,
for any constant ε > 0, unless NP ⊆ DTIME(npolylogn). On the other hand,
we show that there exists a k-approximation algorithm for the problem, using
a simple adaption of a network flow algorithm. We propose some heuristics for
improving the quality of the algorithm. Our empirical results show that the
resulting algorithm works reasonably well in practice.

2 NP-Hardness Proof

In this section, we prove that the MSE problem is NP-hard. The proof is by
a reduction from the Set Cover problem. The decision version of Set Cover is
defined as follows: Given 〈X,C, `〉, where X is a finite set of elements, C is a

2

C1

C2

C3

s

1

2

3

4

5

t

(a) (b)

C1
C2

C3

X

3

1 2

4

5

Fig. 2. (a) An instance of the Set Cover problem, with a covering set {C2, C3}. (b)
Reduction from Set Cover to MSE. Dashed lines represent chains of size `+ 1.

collection of subsets of X, and ` is an integer, is there a subset C ′ ⊆ C with
|C ′| 6 ` such that the member elements of C ′ cover X?

Theorem 2. The MSE problem is NP-hard.

Proof. We prove that the following decision version of MSE is NP-complete:
Given 〈G, k, h〉, where G is a graph with two distinguished nodes s and t, and
k, h ∈ N are two numbers, is there a set P of k paths from s to t such that
the number of edges shared among paths in P is at most h? It is easy to see
that MSE is in NP. A certificate for this problem composed of k paths from s
to t, and a certifier can then, in polynomial time, verify whether the number of
shared edges is less than h.

We reduce Set Cover to MSE, by transforming each instance 〈X,C, `〉 of Set
Cover to an instance 〈G, k, h〉 of MSE. The transformation is as follows. We
first add to G the set of nodes V = VX ∪ VC ∪ {t}, where VX = {vx |x ∈ X}
and VC = {vCi |Ci ∈ C}. We connect every node vx ∈ VX to a node vCi ∈ VC
by a directed edge if x ∈ Ci. Moreover, we connect every node vCi ∈ VC by a
directed edge to t. Additionally, we add a node s to G and connect it to every
other node v ∈ VX ∪ VC using a path of size ` + 1. We call each of these paths
a chain. Figure 2 illustrates our construction on a sample instance of Set Cover.
We complete the transformation by setting k = |X|+ |C| and h = `.

Suppose that there is a set P of k (s, t)-paths in G with at most h shared
edges. We show that there exists a collection C ′ ⊆ C with |C ′| ≤ ` that covers X.
It is easy to observe that each chain appears in at most one (s, t)-path, because
otherwise more than h (= `) edges would be shared. Since the outdegree of s is
equal to the number of paths, k, it follows that each chain is used exactly once,
and thus, each vertex vx ∈ VX appears in exactly one (s, t)-path. Therefore, only
one outgoing edge from each vx ∈ VX is used in P , and hence, shared edges are
only among those incident to t. Now, let V ′ = {v ∈ VC | (v, t) is a shared edge}.
Consider a (s, t)-path that goes through a node vx ∈ VX and a node v ∈ VC . We
claim that v ∈ V ′. Otherwise, node v is incident to two paths, one coming from
vx and the other coming from s via a chain, causing the edge (v, t) to be used
in at least two paths; a contradiction. Therefore, in the induced subgraph G[P],

3

each node vx ∈ VX is connected to a node v ∈ V ′. The set C ′ = {Ci | vCi
∈ V ′}

is thus a covering of X with |C ′| = `.
Conversely, let C ′ ⊆ C be a covering of X with |C ′| ≤ `. We show that in

the corresponding graph G, there is a set P of k paths with at most h shared
edges. Let V ′ = {vCi

∈ VC |Ci ∈ C ′}. For each x ∈ X, we define a (s, t)-path
Px as follows. We start from s and follow the chain to vx. Since x is covered
by a collection Ci ∈ C ′, there is an edge (vx, vCi

) such that vCi
∈ V ′. So, we

use the edge (vx, vCi) to reach from vx to vCi , and then proceed to t. The set
PX = {Px |x ∈ X} consists of |X| (s, t)-paths. Now, we define a set PC of |C|
(s, t)-paths by concatenating, for each Ci ∈ C, the chain from s to vCi

and the
edge (vCi

, t). Let P = PX ∪ PC . It is easy to observe that only edges between
VC and t can be used in more than one path of P . Since nodes in VC \ V ′ are
not touched by the paths in PX , each edge (v, t) for v ∈ VC \ V ′ is used exactly
once in P , and hence, the number of shared edges in P is at most |V ′| = h. ut

3 Approximation Algorithm

In this section, we provide an approximation algorithm for the minimum shared
edges problem by transforming it to a network flow problem, called “Minimum
Edge-Cost Flow”. The problem definition is as follows.

Problem 3 (Minimum Edge-Cost Flow (MECF)). Given a graph G = (V,E)
with a capacity u(e) ∈ Z+ and a cost c(e) ∈ Z+

0 associated to each edge e ∈ E,
find an integral flow f of value F from a source node s to a destination node t
such that the total cost of edges sending non-zero flow, i.e.,

∑
e∈E,f(e)>0 c(e), is

minimized.

It is known that the MECF problem is NP-hard [6]. Krumke et al. [9] have
provided an F -approximation algorithm for the MECF problem. We use their
result to obtain an approximation algorithm for MSE via a transformation. The
following lemma provides the ingredient.

Lemma 4. MSE can be reduced to MECF.

Proof. We transform each instance of MSE on a graph G = (V,E) to an instance
of MECF on a graph G′ = (V ′, E′). The transformation is as follows. We set

c(e2) = 1

c(e1) = 0
u(e1) = 1

u(e2) = k − 1

e1

e2

G G′

e

Fig. 3. Transforming an edge in MSE to two edges in MECF.

4

V ′ = V , and for every edge e ∈ E, we add two edges e1 and e2 to E′ with
u(e1) = 1, c(e1) = 0, u(e2) = k − 1 and c(e1) = 1 (see Figure 3). Any solution
of cost ` for MECF on G′ corresponds to k = F paths in G with ` shared edges.
To see this, consider the set of edges that have positive flow and cost 1 in a
solution for MECF on G′. The corresponding edges in G are exactly those who
are shared in a solution for MSE. Conversely, any solution of size ` for MSE on
G corresponds to a solution of cost ` for MECF on G′. ut

By Lemma 4, any α-approximation algorithm for MECF immediately gives
an α-approximation for MSE. In [9], an approximation algorithm is given for the
MECF problem which is based on a solution for a well-known related problem,
called Minimum-Cost Flow, defined as follows:

Problem 5 (Minimum-Cost Flow (MCF)). Given a graph G = (V,E) with a
capacity u(e) ∈ Z+ and a cost c(e) ∈ Z+

0 associated to each edge e ∈ E, find an
integral flow f of value F from a source node s to a destination node t such that∑

e∈E c(e)f(e) is minimized.

Krumke et al. [9] showed that any solution of cost c to the MCF problem on
a graph with modified edge costs c(e)/u(e) is a solution of cost at most cF to
MECF on the original graph. Therefore, any algorithm for MCF yields an F -
approximation algorithm for MECF. There are a number of efficient algorithms
for the MCF problem. The best one for our setting is an algorithm due to
Ahuja et al. [1] that runs in O(nm log(nC) log logU) time, where n, m, C, and U
are the number of nodes, number of edges, maximum edge cost, and maximum
edge capacity, respectively. Since in our transformation, F = k, C = 1, and
U = k − 1, we get the following result.

Theorem 6. There is a k-approximation algorithm for the MSE problem that
runs in O(nm log n log log k) time.

On series-parallel graphs, a fully polynomial time approximation scheme is
given for the MECF problem in [9]. It leads to a (1+ε)-approximation algorithm
for the MSE problem on series-parallel graphs, with a running time of O(m3(1+
1/ε) log k).

Remark The MECF problem is listed in Garey and Johnson’s book ([6], Problem
[ND32]) as an NP-complete problem, leaving the proof to an unpublished work
by Even and Johnson. As a by-product, Theorem 2 and Lemma 4 together
provide a simple proof for the NP-completeness of MECF.

4 Inapproximability Result

In the previous section, we provided a k-approximation algorithm for the MSE
problem. It is natural to ask if this is the best approximation factor one can
achieve. In this section, we prove a lower bound on the approximability of the
problem. The proof is based on the following theorem from [5] (here, n refers to
the number of nodes in the input graph).

5

...u(e)→

c(e) = 1

u(e) > 0

x y x x′ y

G G′

Fig. 4. Conversion of an edge in MECF with uniform edge-costs to an edge component
in MSE. Dashed lines represent chains of length |E|+ 1.

Theorem 7 (Even et al. [5]). The MECF problem with uniform edge-costs

does not admit a 2log
1−ε n-ratio approximation, for any constant ε > 0, unless

NP ⊆ DTIME(npolylogn). This hardness holds even if only two edge capacity
values are allowed, namely, u(e) ∈ {1,poly(n)}, for every e.

We establish an analogous hardness result for our problem, using an approx-
imation preserving reduction from MECF with uniform edge-costs to MSE. The
reduction is provided below.

Theorem 8. The MSE problem admits no 2log
1−ε n-ratio approximation, for any

ε > 0, unless NP ⊆ DTIME(npolylogn).

Proof. Let P be the problem of finding a (s, t)-flow f of value F and cost C on
a graph G = (V,E) (see Problem 3). Each edge e ∈ E is associated with an
integer capacity u(e) ∈ {1,poly(n)} and a uniform cost c(e) = 1. We construct
a graph G′ = (V ′, E′) from G = (V,E) as follows. For each node x ∈ V we
insert a corresponding node x in V ′. For each edge e = (x, y) ∈ E, we add an
“edge component” between x and y in G′, as depicted in Figure 4. Each edge
component is composed of u(e) parallel chains from x to a newly-added node x′,
and a directed edge from x′ to y. Each chain is composed of |E|+1 directed edges.
We denote the edge component corresponding to an edge (x, y) by (x, x′, y), and
refer to chains connecting x to x′ as type-1 chains. Additionally, we add two
nodes s′ and t′, and connect s′ to s and t to t′ with F chains. We call these
chains type-2 chains. Finally, we add for each edge component (x, x′, y), a chain
from s′ to x′ and a chain from y to t′. We refer to these chains as type-3 chains.
The resulting graph is illustrated in Figure 5.

Let P′ be the problem of finding k = |E| + F (s′, t′)-paths in G′ = (V ′, E′)
with S 6 |E| shared edges. We show that solutions to P and P′ are in one-to-one
correspondence. First, we show that every solution to P′ is a solution to P. A
solution to P′ is a set P of k (s′, t′)-paths in G′ with S 6 |E| shared edges.
Observe that none of the chains in G′ can be on more than one path of P ,
otherwise, the number of shared edges exceeds |E|. Since the out-degree of s′ in
G′ is k = |E| + F , each chain incident to s′ must be on exactly one path of P .
Similarly, each chain incident to t′ is on exactly one path of P . Therefore, each
edge (x′, y) of an edge component (x, x′, y) of G′ is used in at least one path

6

s

t

G = (V,E)

s

t

G′ = (V ′, E′)

. . .
u(e)

. . .

. . .

E

E

u(e)

: chain of length |E|+ 1

x
x′ y

x
y

...F
s′

...F
t′

Fig. 5. Reduction from MECF with uniform edge-costs to MSE.

of P . Moreover, the only edges that can be shared among paths of P are these
(x′, y) edges.

Now, view P as a flow f ′ of value |E|+F from s′ to t′. We convert f ′ to a flow
of value F in G as follows. First, for each path p of the form s′ 99K x′ → y 99K t′,
where 99K represents a chain, we remove a flow of value 1 along p from f ′.
After this step, f ′ has value F , and each type-3 chain has flow zero. Thus, we
can remove type-3 chains from the graph. For each edge component (x, x′, y)
corresponding to an edge e of E, the remaining flow on (x′, y) is at most u(e).
Since the whole flow of x′ now comes from x and continues to y, we can contract
type-1 chains in between, and replace the edge component (x, x′, y) by a single
edge (x, y) of capacity u(e), carrying the same amount of flow previously carried
by (x′, y). Similarly, we can contract type-2 chains and merge s′ to s and t′ to
t. The resulting graph is isomorphic to G, and the new flow f ′ corresponds to
a feasible (s, t)-flow of value F in G. Observe that edges having positive flow in
the new f ′ are exactly those edges having flow greater than 1 in the original f ′,
and thus correspond to edges shared in P . As the cost of each corresponding
edge in G is one, the total cost of flow f ′ is equal to the number of shared edges,
namely C = S.

By reversing the above process, we can show that every solution to P is
also a solution to P′. Therefore, the one-to-once correspondence follows. The
constructed graph G′ has size O(|V |+ |E|(F +

∑
e∈E u(e))). Recall that u(e) ∈

{1,poly(n)}. Moreover, F 6 |V |2 in the construction used in [5]. The reduction
is thus polynomial, and the theorem statement follows. ut

The lower bound proved in Theorem 8 is stated in terms of n. Since k is
unbounded in the original definition of MSE, we cannot directly use the above
theorem to get a lower bound in terms of k. The following lemma, however,
enables us to bound the value of k, and get an analogous lower bound.

Lemma 9. If k > |E|, then the minimum number of shared edges is equal to
the size of the shortest (s, t)-path.

7

Proof. It is easy to see that in any set of k paths, for k > |E|, there is a path
whose all edges are shared. Because, otherwise, each path needs to have at least
one edge different from other paths, requiring more than |E| edges, which is
impossible. ut

Lemma 9 implies that the MSE problem is polynomially solvable on instances
with k > |E|. Therefore, we can simply assume that k 6 |E| = O(n2). Theorem 8

thus implies a lower bound of 2log
1−ε k on the approximability of MSE.

5 Heuristic Improvements

In this section, we discuss some heuristics for improving the quality of the k-
approximation algorithm described in Section 3. Experimental results from im-
plementing the heuristics are also presented and compared.

5.1 Successive Cost Update

The k-approximation algorithm described in Section 3 is based on running a
minimum-cost flow (MCF) algorithm, and returning the obtained flow as a k-
approximation for MECF, which in turn, gives a k-approximation for MSE.

The MCF algorithm receives a transformed graph in which each edge has a
cost in {0, 1/(k − 1)}. When it comes to using an edge of cost 1/(k − 1), the
additive cost of selecting an edge that is not sending any flow is the same as that
of an edge that is currently sending a positive flow. Given that a positive flow on
an edge of cost 1/(k−1) corresponds to a shared edge in the original graph G, it
follows that in the k-approximation algorithm, there is no preference in reusing
a previously shared edge rather than sharing a fresh edge. Our first heuristic
attempts to force the approximation algorithm to reuse edges previously used in
the solution.

Algorithm 1 mse-approx(G, k, s, t)

1: construct G′ from G using Lemma 4

2: obtain G0 from G′ by updating the cost of each edge e to c(e)/u(e)

3: compute a minimum-cost (s, t)-flow f of value k in G0

4: set i = 0

5: while cost of f 6= 0 do

6: find an edge e with a maximum flow among positive-cost edges in Gi

7: obtain Gi+1 from Gi by updating the cost of e to zero

8: compute a minimum-cost (s, t)-flow f of value k in Gi+1

9: i ← i+ 1

10: return i

8

We implement this heuristic by an iterative cost update method. To encour-
age the MCF algorithm to reuse a previously shared edge, we select at each
iteration an edge with maximum flow among edges that have positive cost, up-
date the cost of that edge to zero, and re-run the MCF algorithm. It is easy to
observe that this cost update operation does not affect the approximation factor
of the algorithm. Details of the heuristic are provided in Algorithm 1.

5.2 Shortest Path Bound

The second heuristic is based on the fact that the minimum number of shared
edges in the MSE problem is bounded from above by the number of edges in a
shortest path from s to t. Let p be the size of a shortest (s, t)-path. If a feasible
solution to MSE consisting of k (s, t)-paths uses more than p edges, we can
reroute all k paths through a shortest path, and reduce the number of shared
edges to p. We use this tweak on top of Algorithm 1 to obtain the second heuristic
as shown in Algorithm 2.

Algorithm 2 mse-approx2(G, k, s, t)

1: let r = mse-approx(G, k, s, t)

2: let p = size of a shortest (s, t)-path in G

3: return min(r, p)

5.3 Experimental Results

We implemented the k-approximation algorithm described in Section 3 as well
as the two heuristics described in this section. We evaluated our code on two
families of graphs: road networks for large cities, and networks produced by
benchmark graph generators. Figures 6 and 7 summarize the results of running
our code on the two sample graphs: a road network for the city of Rome1, and
a random directed graph from DARPA HPCS SSCA#2 graph theory bench-
mark [2]2. A SSCA#2 graph is a representative of computations in the field
of national security, scientific computing, and computational biology. Both test
graphs have 3350 nodes and 8870 edges.

The algorithms are run for k = 1 to 50, and the average number of shared
edges are reported for 100 randomly-picked pairs of source and destination nodes.
To force random pairs to be far enough, we discarded pairs of source and desti-
nation nodes that were less than

√
n/4 edges apart, for n being the number of

nodes. We used High Performance Computing Virtual Laboratory (HPCVL)’s
Beowulf Cluster3 that has 64 nodes of 4×2.2 GHz Opteron Cores with 8 GB
RAM for running the experiments in parallel.

1 The graph is available at: http://www.dis.uniroma1.it/∼challenge9/data/rome/rome99.gr
2 The generator is available at: https://sdm.lbl.gov/∼kamesh/software/GTgraph/
3 The information is available at: http://www.hpcvl.org/hpc-env-beowulf-cluster.html

9

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 0 5 10 15 20 25 30 35 40 45 50

N
u

m
b

e
r

o
f

S
h

a
re

d
 E

d
g

e
s

Number of Paths (k)

k-approx
heuristic 1
heuristic 2

Fig. 6. Empirical results for the road network of Rome.

As can be seen in Figures 6 and 7, our heuristics perform significantly better
compared to the original k-approximation algorithm. For large enough values of
k, we get an improvement of 50% to 85% in the number of shared edges in these
two graphs. The second heuristic performs better than the first one for some
range of k. However, the two heuristics eventually converge for k sufficiently
large. The reason for this convergence is that when the number of paths, k, is
large, it is more likely for the edges on shortest paths to be shared in more paths,
and thus, be selected by Algorithm 1 for cost update.

6 Conclusions

In this paper, we studied the complexity of the minimum shared edges problem,
and showed that the problem admits no 2log

1−ε k-factor approximation, for any
constant ε > 0. Moreover, we presented a k-approximation algorithm for the
problem, and proposed some heuristics for improving it in practice. The first
heuristic provided in Section 5 can be indeed used as a practical algorithm for
the MECF problem.

An interesting open problem is to see if an algorithm with an approximation
ratio better than k exists for the minimum shared edges problem. Although our
lower bound in Section 4 eliminates the possibility of having a poly-logarithmic
approximation factor, we have not ruled out the possibility of having an approxi-
mation factor of O(nc), for a constant c < 1. (For example, see [4] for two variants

of the Label Cover problem for which the same hardness of 2log
1−ε n holds, yet

they admit a O(n1/3)-factor approximation.) Improving the lower bound on the
approximability is another open problem.

10

 0

 20

 40

 60

 80

 100

 120

 0 5 10 15 20 25 30

N
u

m
b

e
r

o
f

S
h

a
re

d
 E

d
g

e
s

Number of Paths (k)

k-approx
heuristic 1
heuristic 2

Fig. 7. Empirical results for a SSCA benchmark graph.

Acknowledgments The authors would like to thank Anil Maheshwari and
Peter Widmayer for helpful discussions.

References

1. R. K. Ahuja, A. V. Goldberg, J. B. Orlin, and R. E. Tarjan. Finding minimum-cost
flows by double scaling. Mathematical Programming, 53(1):243–266, 1992.

2. D. Bader and K. Madduri. Design and implementation of the HPCS graph analysis
benchmark on symmetric multiprocessors. In Proc. 12th Internat. Conf. High
Perform. Comput., volume 3769 of Lecture Notes Comput. Sci., pages 465–476.
2005.

3. D. A. Castanon. Efficient algorithms for finding the k best paths through a trellis.
IEEE Trans. Aerospace and Electronic Systems, 26(2):405–410, 1990.

4. M. Charikar, M. Hajiaghayi, and H. Karloff. Improved approximation algorithms
for label cover problems. In Proc. 17th Annu. European Sympos. Algorithms, vol-
ume 5757 of Lecture Notes Comput. Sci., pages 23–34. 2009.

5. G. Even, G. Kortsarz, and W. Slany. On network design problems: fixed cost flows
and the covering steiner problem. ACM Trans. Algorithms, 1(1):74–101, 2005.

6. M. Garey and D. S. Johnson. Computers and intractability : A guide to the theory
of NP-completeness. W. H. Freeman, 1979.

7. A. V. Goldberg and S. Rao. Beyond the flow decomposition barrier. J. ACM,
45(5):783–797, 1998.

8. Y. Kobayashi and C. Sommer. On shortest disjoint paths in planar graphs. Discrete
Optimization, 7(4):234–245, 2010.

9. S. O. Krumke, H. Noltemeier, S. Schwarz, H.-C. Wirth, and R. Ravi. Flow im-
provement and network flows with fixed costs. In Proc. Internat. Conf. Oper. Res.:
OR-98, pages 158–167, 1998.

11

10. S.-W. Lee and C.-S. Wu. A k-best paths algorithm for highly reliable communica-
tion networks. IEICE Trans. Commun., E82-B(4):586–590, 1999.

11. S. D. Nikolopoulos, A. Pitsillides, and D. Tipper. Addressing network survivability
issues by finding the k-best paths through a trellis graph. In Proc. 16th IEEE
Internat. Conf. Comput. Commun., pages 370–377, 1997.

12. J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of
disjoint paths. Networks, 14(2):325–336, 1984.

13. S. Q. Zheng, B. Yang, M. Yang, and J. Wang. Finding minimum-cost paths with
minimum sharability. In Proc. 26th IEEE Internat. Conf. Comput. Commun.,
pages 1532–1540, 2007.

12

