Radial schrodinger's equation

Examples:

Radial schrodinger's equation

$$
\begin{aligned}
V(\vec{R}) & =V(\hat{r}) \longrightarrow \text { Only depe-ds on the distance } \\
\Rightarrow V(\vec{R}) & =V(\hat{r}) \otimes 1_{\theta} \otimes 1_{\varphi}
\end{aligned}
$$

$$
\hat{H}=\frac{\hat{P}^{2}}{2 m}+V(\hat{r}) \quad \rightarrow P^{2}=\hat{P}_{r}^{2} \otimes 11+1 \otimes \hat{P}_{\Omega}^{2}
$$

$P^{2}=-\hbar^{2} \nabla^{2} \longrightarrow$ Cartezian Coordinate is not good for this.

$$
\nabla^{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)-\frac{1}{\hbar^{2} r^{2}} \hat{\vec{L}}^{2}
$$

Sch. eq $\frac{-\hbar^{2}}{2 M}[\underbrace{\frac{1}{r} \frac{\partial^{2}}{\partial r^{2}} r}_{\hat{p}_{r}^{2}}-\underbrace{\frac{1}{\hbar^{2} r^{2}} \hat{\vec{L}}^{2}}_{\hat{P}_{\Omega}^{2}}+V(r)] \psi(\vec{r})=E \psi(\vec{r})$

Separation of variables

$$
\psi(\vec{r})=R(r) \Omega(\theta, \varphi)
$$

Should be eigenfunction $\leftarrow Y_{\text {em }}(\alpha, \varphi)$

$$
\text { of } L^{2} \text {. }
$$

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 M} \not Y_{m} \frac{\partial^{2}}{\partial r^{2}} r R(r)+\frac{\hbar^{2} l(l+1) Y_{e m}(\theta, q)}{2 M r^{2}} r R(r)+Y_{l e m} V(r) r R\left(\left(Y_{/ l m} / E r R(r)\right.\right. \\
\Rightarrow \frac{-\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial r^{2}} U(r)+\frac{l(l+1) \hbar^{2}}{2 M r^{2}} U(r)+V(r) U(r)=E U(r) \\
U(r)=r R(r) \rightarrow U_{E, l, m} \rightarrow U_{E, l}
\end{gathered}
$$

For bound states $E \rightarrow E_{n}$

$$
\begin{gathered}
\Rightarrow U_{n_{1} l}(r) \\
\frac{-\hbar^{2}}{2 M} \frac{\partial^{2}}{\partial r^{2}} U_{n e}(r)+\left(\frac{l(l+1) \hbar^{2}}{2 M r^{2}}+V(r)\right) U_{n e}(r)=E_{n} U_{n e}(r)
\end{gathered}
$$

Radial Sch eq

$$
V_{\text {eff }}=V(r)+\underbrace{\frac{l(l+1) h^{2}}{2 M r^{2}}}_{V(r)}
$$

To have bound states, $V(r)$ should be attractive.

* This is effectively a 1-D potential problem.

But

$$
\begin{array}{r}
r \geq 0 \\
\Rightarrow \lim _{r \rightarrow 0} U_{n l}(r)=0
\end{array}
$$

(Similar to $\quad r \rightarrow \infty$).

* The larger the l_{1} the harder it would be to bound the state. This is similar to the classical behavior If angular momentum is to large, the attractive potential needs to be strong enough to compensate.

$$
* \quad \psi_{n, l, m}(\vec{r})=R_{n l}(r) Y_{l m}(\theta, \varphi)
$$

Note that L_{z} does not appear in the eq which implies all m give the same energy:

$$
n, l \rightarrow m=2 l+1 \text { degeneracy (at least) }
$$

Example 1: Free particle

$$
\begin{aligned}
& V(r)=0 \Rightarrow V_{\text {eff }}=\frac{l(l+1) \hbar^{2}}{2 M r^{2}} \\
& \Rightarrow \frac{-\hbar^{2}}{2 M} \frac{d^{2}}{r} \frac{d^{2}}{d r^{2}}(r R(r))+\frac{l(l+1) \hbar^{2}}{2 M r^{2}} R(r)=E \\
& k=\sqrt{\frac{2 M E}{\hbar^{2}}} \quad, P=k r \\
& \frac{d^{2}}{d r^{2}}(r R(r))=2 \frac{d R(r)}{d r}+r \frac{d^{2} R(r)}{d r^{2}} \\
& \frac{k}{\rho}\left[2 k \frac{d R(\rho)}{d \rho}+\left(\frac{\rho}{k}\right)\left(k^{2}\right) \frac{d^{2} R(\rho)}{d \rho^{2}}\right]-\frac{l(l+1) \hbar^{2} k^{2}}{\rho^{2}} R(\rho)=-k^{2} R(\rho) \\
& \Rightarrow \frac{d^{2} R(\rho)}{d \rho^{2}}+\frac{2}{\rho} \frac{d R(\rho)}{d \rho}+\left[1-\frac{l(l+1) \hbar^{2}}{\rho^{2}}\right] R(\rho)=0 \\
& T_{\square} \text { Spherical Bessel eq. } \\
& R_{l}(\rho)=A_{l} J_{l}(\rho)+B_{l} n_{l}(\rho)
\end{aligned}
$$

We also have $\lim _{\rho \rightarrow 0} R_{l}(\rho)$ should be finite un d $B_{l}=0 .\left(n_{l}(\rho)\right.$ diverge at $\left.\rho=0\right)$

$$
\psi_{l, l, m}(\vec{r})=J_{l}(k r) Y_{l m}(0, \varphi)
$$

(A) Which one was easier? Spherical or Carte sian Coordinates?
(A) How are the solutions related?
(A) What is the CSCO for the solutions in * Sphencal Coordinates?

* Cartesian "?

Example 2: Potential Well

$$
\begin{aligned}
& V(r)=\left\{\begin{array}{ccc}
-V_{0} & 0 \leq r \leq a & 0 \\
0 & a<r & -V_{0} \underbrace{}_{a} \\
r
\end{array}\right. \\
& 0 \leq r \leq a \\
& \longrightarrow \\
& \frac{d^{2} R(\tilde{\rho})}{d \tilde{\rho}^{2}}+\frac{2}{\tilde{\rho}} \frac{d R(\tilde{\rho})}{d \tilde{\rho}}+\left[1-\frac{l(l+1) \hbar^{2}}{\tilde{\rho}^{2}}\right] R(\tilde{\rho})=0 \\
& \tilde{p}=q r, \quad q=\sqrt{\frac{2 m(V+E)}{t^{2}}}
\end{aligned}
$$

$$
\psi_{k l, m}(\vec{r})=J_{l}(q r) Y_{l m}(g, q)
$$

$r>a \quad E>0 \leadsto$ similar to free particle

$$
\begin{aligned}
& +B C \\
& -v_{0} \leq E \leq 0 \Rightarrow k \rightarrow i k \\
& R_{l}(\rho)=C h_{l}^{(1)}(\rho)+D h_{l}^{(2)}(\rho) \\
& \left\{\begin{array}{l}
h_{l}^{(1)}=J_{l}(\rho)+i n_{l}(\rho), \\
h_{l}^{(2)}=J_{l}(\rho)-i n_{l}(\rho) \quad: r \rightarrow \infty \quad h_{l}^{(2)} \rightarrow \infty
\end{array}\right. \\
& R_{l}(\rho)=h_{l}^{(1)}(\rho) \\
& \psi_{k l m}(\vec{r})=h_{l}^{(1)}(\imath k r) Y_{l m}(\theta, \varphi) \\
& \rightarrow B C \\
& \Rightarrow k \cot (k r)=-q
\end{aligned}
$$

Example 3: Isotropic Harmonic Potential

$$
V(\sigma)=\frac{1}{2} m \omega^{2} r^{2}
$$

Potential gets stronger as we get away from the center.

The radial sch eq::

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 M} \frac{d^{2}}{d r^{2}}\left(r R_{n l}(r)\right)+(\underbrace{\left.\frac{l(l+1) \hbar^{2}}{2 M r^{2}}+V(r)\right)} r R_{n e}(r)=E_{n} r R_{n e}(r) \\
& \sqrt{ } \\
& \left.V_{\text {eff }}(r)=\frac{1}{2} m \omega^{2} r^{2}\right)+\frac{l(l+1) \hbar^{2}}{2 M\left(r^{2}\right)}
\end{aligned}
$$

How do we solve this?
This is an important example.
We follow basically the exact steps for the
Hydrogen atom.
(1) Asymptotic behavior.
a)

$$
\begin{aligned}
& \quad r \rightarrow 0 \\
& -\frac{\hbar^{2}}{2 M} \frac{d^{2}}{d r^{2}}\left(U_{n l}(r)\right)+\frac{l(l+1) \hbar^{2}}{2 M r^{2}} U_{n e}(r)=0 \\
& U_{n l}(r) \sim r^{l+1}
\end{aligned}
$$

b) $r \rightarrow \infty$

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 M} \frac{d^{2}}{d r^{2}}\left(U_{n e}(r)\right)+\frac{1}{2} M \omega^{2} r^{2} U_{n e}(r)=0 \\
U_{n l}(r) \sim e^{-m \omega r^{2} / 2 \hbar}
\end{gathered}
$$

(2) We make a guess

$$
U_{n \ell}(r)=f(r) r^{l+1} e^{-\frac{M \omega r^{2}}{2 \pi}}
$$

and rewrite the sch. eq for $f(r)$.

$$
\begin{aligned}
& -\frac{\hbar^{2}}{2 M} \frac{d^{2}}{d r^{2}}\left(U_{n e}(r)\right)+\left(\frac{\ell(l+1) \hbar^{2}}{2 M r^{2}}+V(r)\right) U_{n e}(r)=E_{n} U_{n e}(r) \\
& \text { a) } \frac{d^{2}}{d r^{2}}\left[f(r) r^{l+l} e^{-\frac{M \omega r^{2}}{2 \hbar}}\right]=r^{l+1} e^{-\frac{M \omega r^{2}}{2 \hbar}} \frac{d^{2} f(r)}{d r^{2}} \\
& +\frac{d f}{d r}\left[2(l+1) r^{l} e^{-\frac{\mu \omega r^{2}}{2 \hbar}}-\frac{2 M \omega r}{\hbar} r^{l+1} e^{-\frac{\mu \omega r^{2}}{2 \hbar}}\right] \\
& +f(r)\left[l(l+1) r^{l-1} e^{-M \omega r^{2}} 2 \hbar+\left(\frac{M \omega r}{\hbar}\right)^{2} r^{l+1} e^{-M \omega r^{2}} 2 \hbar\right. \\
& \left.+[(l+1)+(l+2)]\left(\frac{-M \omega r}{\hbar}\right) r^{l} e^{-\frac{M \omega r^{2}}{2 \hbar}}\right] \\
& =r^{l+1} e^{-\frac{M \omega r^{2}}{2 \hbar}}\left[\frac{d^{2} f}{d r^{2}}+\frac{d f}{d r}\left(\frac{2(l+1)}{r}-2 \frac{M \omega r}{\hbar}\right)+f\left(\frac{e(l+1)}{r^{2}}+\left(\frac{M \omega r}{\hbar}\right)^{2}-\frac{(e+r) 3) M \omega}{\hbar}\right)\right]
\end{aligned}
$$

$\stackrel{b}{\Rightarrow}$ Putting it all back together and dividing by

$$
-\frac{2 M}{\hbar^{2}} r^{l+1} e^{-\frac{\mu \omega}{2 \hbar} r^{2}} \quad \text { gives: }
$$

$$
\frac{d^{2} f}{d r^{2}}+\frac{d f}{d r}\left[\frac{2(l+1)}{r}-\frac{2 M \omega r}{\hbar}\right]+\left[\frac{2 M E}{\hbar^{2}}-(2 l+3) \frac{M \omega}{\hbar}\right] f=0
$$

(3)

$$
\begin{aligned}
& f(r)=\sum_{i=0}^{\infty} a_{i} r^{i} \rightarrow \text { Polynomial expansion } \\
& \Rightarrow \sum_{i} i(i-1) a_{i} r^{i-2}+2(l+1) a_{i} r^{i-2}-\frac{2 M \omega}{\hbar} i a_{i} r^{i}+\left[\frac{2 M E}{\hbar^{2}}-(2 l+3) \frac{M \omega}{\hbar}\right] a_{i} r^{i}=0 \\
& \Rightarrow \sum_{i=0}^{\infty} i((i-1)+2(l+1)) a_{i} r^{i-2}+\left(\frac{-2 M \omega}{\hbar} 2+\frac{2 M E}{\hbar^{2}}-(2 l+3) \frac{M \omega}{\hbar}\right) a_{1} r^{i}=0 \\
& \Rightarrow \quad \sum_{i}^{2}(2+2 l+1) a_{1} r^{2-2}+\left(\frac{2 M E}{\hbar^{2}}-(2 i+2 l+3) \frac{M \omega}{\hbar}\right) a_{1} r^{i}=0 \\
& \imath=0: \quad i(i+2 l+1) a_{i} r^{-2}=0 \\
& i=1 \quad i(i+2 l+1) a_{1} r^{-1}=(2 l+2) a_{1}=0 \Rightarrow a_{1}=0 \\
& i \geq 2(2+2)(i+2 l+3) a_{i+2}=\left[-\frac{2 M E}{\hbar^{2}}+(21+2 \ell+3) \frac{M \omega}{\hbar}\right] a \text {. }
\end{aligned}
$$

\rightarrow All the odd terms vanish.
\rightarrow For the even terms

$$
a_{i+2}=\frac{(2 i+2 l+3) M \hbar \omega-2 M E}{\hbar^{2}(i+2)(i+2 l+3)} a_{1}
$$

$$
\rightarrow f(r)=\sum_{i=0}^{\infty} a_{2,} r^{2 i}
$$

How can we stop this from diverging?

$$
a_{i}=0 \quad \forall i \geq 2 N
$$

egg. $\quad a_{0} \neq 0, a_{2}=0$

$$
\begin{gathered}
\Rightarrow \xi_{0}=\left.0 \Rightarrow \frac{(2 i+2 l+3) M \hbar \omega-2 M E}{\hbar^{2}(i+2)(i+2 l+3)}\right|_{i=0}=0 \\
\Rightarrow(2 l+3) M \hbar \omega-2 M E=0 \\
E=\left(\frac{2 l+3}{2}\right) \hbar \omega
\end{gathered}
$$

\rightarrow For the general case of $\delta_{2 N}$ we have:

$$
2=2 N
$$

$$
\delta_{2 N}=0 \Rightarrow(2 N+l+3 / 2) \hbar w=E
$$

$n \rightarrow$ The energy quantum number.

$$
E_{n}=(n+3 / 2) \hbar \omega \quad, n=0,1,2, \ldots
$$

* Since $n=2 N+l$, for
odd $n \rightarrow l$ is always odd
even $n \rightarrow l$ is "Even.
egg.

$$
\begin{aligned}
& n=0 \longrightarrow N=0, l=0 \\
& g .=1 \\
& n=1 \longrightarrow N=0, l=1, m= \pm 1,0 \quad g_{1}=3 \\
& n=2 \longrightarrow(N=1, l=0) \text { or }(N=0, l=2) \quad g_{2}=6 \\
& n=3 \longrightarrow(N=1, l=1) \text { or }\left(N=0^{7}, l=3\right) \quad g_{3}=10 \\
& g_{n}=\sum_{\substack{\text { allowed } \\
l}}(2 l+1) \\
& \text { Odin } \left.\quad \sum_{l=1,3}^{n}(2 l+1)\right] \rightarrow=2(n+1)\left(\frac{n+1}{2}\right)+\frac{n+1}{2} \\
& =\frac{n+1}{2}(n+1+1) \\
& \frac{\begin{array}{ccccc}
1 & 3 & 5 & \cdots & n \\
n & n-2 & \cdots & 3 & 1
\end{array}}{(n+1)\left(\frac{n+1}{2}\right)}=\frac{1}{2}(n+1)(n+2)
\end{aligned}
$$

Similarly for even $n \rightarrow g_{n}=\frac{1}{2}(n+1)(n+2)$

