Redo the model that we did for SGE \& take

* the $\vec{x}_{+}=\binom{1}{0} \& \vec{x}_{-}=\binom{0}{1}$.
* Find the operators for $M_{x}, M_{y} \& M_{z}$.
(The matrix representation based on $|x+\rangle=(!)$

$$
\$\left|x_{-}\right\rangle=\binom{0}{1}
$$

Repeat the formalism that we did for a setting where the box has 3 outcomes.

Show that $\left(\vec{v}_{\text {in }}^{+} \cdot \vec{z}_{+}\right)\left(\vec{z}_{+}^{+}{\overrightarrow{v_{i n}}}^{\prime}\right)=$

$$
\vec{\nu}_{\text {in }}^{+} \cdot \prod_{z_{+}} \cdot v_{\text {in }} \text { with } \Pi_{z_{+}}=\vec{z}_{+} \cdot \vec{z}_{+}^{+}
$$

\longrightarrow Check that for the state $|\psi\rangle=\binom{\alpha_{\beta}}{\beta}$,
$|\alpha|^{2}+|\beta|^{2}=1, \quad$ guarantees the probability normalization in all bases. (For all different measurements)

Unitary operators are normal operators and therefore there
exists
there exists

$$
U=\sum_{i} v_{i}\left|i x_{i}\right|
$$

Show that $u_{i}=e^{i \phi}$.

For A, B in $L(L l)$ show that

$$
\operatorname{Tr}([A, B])=0 \quad \text { for finite }
$$

dimensional $l l$.

We showed that for $A \in \mathcal{L}(\mathscr{L})$
(1) $A(t)=U^{\dagger}(t) A U(t)$ for $U(t)=e^{-i H t / \hbar}$
(Assuming that H is time-independent.).
Show that

$$
\frac{d \hat{A}(t)}{d t}=\frac{i}{\hbar}[A(t), H]
$$

(2) Show that this true for time-dependent Hamiltonians too (Hint: Consider $U(t \rightarrow t+\delta t)$ for $\delta t \rightarrow 0)$.

Consider $|\psi\rangle$ from $\quad\left[\begin{array}{c}s c_{x} \\ x\end{array}\right]-F|\psi\rangle$

1) Calculate $\left\langle M_{x}\right\rangle \&\left\langle M_{x}^{2}\right\rangle$ on $|\psi\rangle$.

Then calculate $\Delta M_{x}^{2}=\left\langle M_{x}^{2}\right\rangle-\left\langle M_{x}\right\rangle^{2}$.
2) Repeat the calculation in 1 for M_{z}.

Find an example of U such that

$$
U U^{t}=1 \quad \text { bat } \quad U U^{t} \neq U^{t} U
$$

Can the state be uniquely specified from the probability distribution? (see the example of the discrete position.)

