Chapter 11
Hierarchical Task Network Planning
Motivation

- We may already have an idea how to go about solving problems in a planning domain
- Example: travel to a destination that’s far away:
 - Domain-independent planner:
 » many combinations vehicles and routes
 - Experienced human: small number of “recipes”
 e.g., flying:
 1. buy ticket from local airport to remote airport
 2. travel to local airport
 3. fly to remote airport
 4. travel to final destination
- How to enable planning systems to make use of such recipes?
Two Approaches

- Control rules (previous chapter):
 - Write rules to prune every action that doesn’t fit the recipe

- Hierarchical Task Network (HTN) planning:
 - Describe the actions and subtasks that do fit the recipe
Task: \(\text{travel}(x,y) \)

Method: \(\text{taxi-travel}(x,y) \)

- get-taxi
- \(\text{ride}(x,y) \)
- pay-driver

Method: \(\text{air-travel}(x,y) \)

- get-ticket(\(a(x),a(y) \))
- fly(\(a(x),a(y) \))
- \(\text{travel}(a(y),y) \)
- \(\text{travel}(x,a(x)) \)

Method: \(\text{taxi-travel}(x,y) \)

- get-ticket(\(a(x),a(y) \))
- fly(\(a(x),a(y) \))
- \(\text{travel}(a(y),y) \)

Method: \(\text{taxi-travel}(x,y) \)

- get-ticket(\(a(x),a(y) \))
- fly(\(a(x),a(y) \))
- \(\text{travel}(a(y),y) \)

Problem reduction

- **Tasks** (activities) rather than goals
- **Methods** to decompose tasks into subtasks
- Enforce constraints
 - E.g., taxi not good for long distances
- Backtrack if necessary

HTN Planning
- HTN planners may be domain-specific
 - e.g., Robotics (Chapters 20) and Bridge (Chapter 23)

- Or they may be domain-configurable
 - Domain-independent planning engine
 - Domain description
 - methods, operators
 - Problem description
 - domain description, initial state, initial task network

Abstract-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow$ Refine(u) ;; refinement step
 $B \leftarrow$ Branch(u) ;; branching step
 $B' \leftarrow$ Prune(B) ;; pruning step
 if $B' = \emptyset$ then return(failure)
 nondeterministically choose $v \in B'$
 return(Abstract-search(v))
end
Simple Task Network (STN) Planning

- A special case of HTN planning
- States and operators
 - The same as in classical planning
- Task: an expression of the form \(t(u_1, \ldots, u_n) \)
 - \(t \) is a task symbol, and each \(u_i \) is a term
 - Two kinds of task symbols (and tasks):
 - primitive: tasks that we know how to execute directly
 - task symbol is an operator name
 - nonprimitive: tasks that must be decomposed into subtasks
 - use methods (next slide)
Methods

- Totally-ordered method: a 4-tuple
 \[m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{subtasks}(m)) \]
 - **name**(\(m\)): an expression of the form \(n(x_1,\ldots,x_n)\)
 - \(x_1,\ldots,x_n\) are parameters - variable symbols
 - **task**(\(m\)): a nonprimitive task
 - **precond**(\(m\)): preconditions (literals)
 - **subtasks**(\(m\)): a sequence of tasks \(<t_1,\ldots,t_k>\)

- **air-travel**\((x,y)\)
 - **task**: \(\text{travel}(x,y)\)
 - **precond**: \(\text{long-distance}(x,y)\)
 - **subtasks**: \(<\text{buy-ticket}(a(x),a(y)), \text{travel}(x,a(x)), \text{fly}(a(x),a(y)), \text{travel}(a(y),y)>\)
Partially ordered method: a 4-tuple

\[m = (\text{name}(m), \text{task}(m), \text{precond}(m), \text{subtasks}(m)) \]

- **name(m):** an expression of the form \(n(x_1, \ldots, x_n) \)
 - \(x_1, \ldots, x_n \) are parameters - variable symbols
- **task(m):** a nonprimitive task
- **precond(m):** preconditions (literals)
- **subtasks(m):** a partially ordered set of tasks \(\{ t_1, \ldots, t_k \} \)

Network:
- **task:** \(\text{travel}(x, y) \)
- **precond:** \(\text{long-distance}(x, y) \)
- **network:** \(u_1 = \text{buy-ticket}(a(x), a(y)), u_2 = \text{travel}(x, a(x)), u_3 = \text{fly}(a(x), a(y)) \)
- \(u_4 = \text{travel}(a(y), y), \ (u_1, u_3), (u_2, u_3), (u_3, u_4) \)
Domains, Problems, Solutions

- **STN planning domain**: methods, operators
- **STN planning problem**: methods, operators, initial state, task list
- **Total-order STN planning domain and planning problem**:
 - Same as above except that all subtasks are totally ordered

- **Solution**: any executable plan that can be generated by recursively applying
 - methods to nonprimitive tasks
 - operators to primitive tasks
Example

- Suppose we want to move three stacks of containers in a way that preserves the order of the containers.
Example (continued)

- A way to move each stack:
 - first move the containers from p to an intermediate pile r
 - then move them from r to q
take-and-put\((c, k, l_1, l_2, p_1, p_2, x_1, x_2)\):
 \[\text{task: move-topmost-container}(p_1, p_2)\]
 \[\text{precond: top}(c, p_1), \text{on}(c, x_1), \quad \text{true if } p_1 \text{ is not empty}\]
 \[\text{attached}(p_1, l_1), \text{belong}(k, l_1), \quad \text{bind } l_1 \text{ and } k\]
 \[\text{attached}(p_2, l_2), \text{top}(x_2, p_2), \quad \text{bind } l_2 \text{ and } x_2\]
 \[\text{subtasks: } \langle \text{take}(k, l_1, c, x_1, p_1), \text{put}(k, l_2, c, x_2, p_2) \rangle\]

recursive-move\((p, q, c, x)\):
 \[\text{task: move-stack}(p, q)\]
 \[\text{precond: top}(c, p), \text{on}(c, x) \quad \text{true if } p \text{ is not empty}\]
 \[\text{subtasks: } \langle \text{move-topmost-container}(p, q), \text{move-stack}(p, q) \rangle \]
 ;; the second subtask recursively moves the rest of the stack

do-nothing\((p, q)\)
 \[\text{task: move-stack}(p, q)\]
 \[\text{precond: top}(\text{pallet}, p) \quad \text{true if } p \text{ is empty}\]
 \[\text{subtasks: } \langle \rangle \quad \text{no subtasks, because we are done}\]

move-each-twice()
 \[\text{task: move-all-stacks()}\]
 \[\text{precond: } \text{no preconditions}\]
 \[\text{network: move each stack twice:}\]
 \[u_1 = \text{move-stack}(p_{1a}, p_{1b}), \quad u_2 = \text{move-stack}(p_{1b}, p_{1c}),\]
 \[u_3 = \text{move-stack}(p_{2a}, p_{2b}), \quad u_4 = \text{move-stack}(p_{2b}, p_{2c}),\]
 \[u_5 = \text{move-stack}(p_{3a}, p_{3b}), \quad u_6 = \text{move-stack}(p_{3b}, p_{3c}),\]
 \[\{(u_1, u_2), (u_3, u_4), (u_5, u_6)\}\]
take-and-put\((c, k, l_1, l_2, p_1, p_2, x_1, x_2)\):
 task: \move-topmost-container(p_1, p_2)
 precond: top(c, p_1), on(c, x_1), \(\text{true if } p_1 \text{ is not empty}\)
 attached(p_1, l_1), belong(k, l_1), \(\text{bind } l_1 \text{ and } k\)
 attached(p_2, l_2), top(x_2, p_2) \(\text{bind } l_2 \text{ and } x_2\)
 subtasks: \(\langle \take(k, l_1, c, x_1, p_1), \put(k, l_2, c, x_2, p_2) \rangle\)

recursive-move\((p, q, c, x)\):
 task: \move-stack(p, q)
 precond: top(c, p), on(c, x) \(\text{true if } p \text{ is not empty}\)
 subtasks: \(\langle \move-topmost-container(p, q), \move-stack(p, q) \rangle\)
 ;; the second subtask recursively moves the rest of the stack

do-nothing\((p, q)\)
 task: \move-stack(p, q)
 precond: top(pallet, p) \(\text{true if } p \text{ is empty}\)
 subtasks: \(\langle \rangle\) \(\text{no subtasks, because we are done}\)

move-each-twice()
 task: \move-all-stacks()
 precond: \(\text{no preconditions}\)
 subtasks: \(\text{move each stack twice:}\)
 \(\langle \move-stack(p_{1a}, p_{1b}), \move-stack(p_{1b}, p_{1c}), \move-stack(p_{2a}, p_{2b}), \move-stack(p_{2b}, p_{2c}), \move-stack(p_{3a}, p_{3b}), \move-stack(p_{3b}, p_{3c}) \rangle\)
Solving Total-Order STN Planning Problems

TFD(s, \langle t_1, \ldots, t_k \rangle, O, M)
if k = 0 then return \langle \rangle (i.e., the empty plan)
if t_1 is primitive then
 \text{active} \leftarrow \{(a, \sigma) \mid a \text{ is a ground instance of an operator in } O, \right.
 \sigma \text{ is a substitution such that } a \text{ is relevant for } \sigma(t_1), \left.
 \text{and } a \text{ is applicable to } s\}\)
if \text{active} = \emptyset then return failure
nondeterministically choose any \((a, \sigma) \in \text{active} \)
\pi \leftarrow TFD(\gamma(s, a), \sigma(\langle t_2, \ldots, t_k \rangle), O, M)
if \pi = failure then return failure
else return \(a \cdot \pi\)
else if t_1 is nonprimitive then
 \text{active} \leftarrow \{m \mid m \text{ is a ground instance of a method in } M, \right.
 \sigma \text{ is a substitution such that } m \text{ is relevant for } \sigma(t_1), \left.
 \text{and } m \text{ is applicable to } s\}\)
if \text{active} = \emptyset then return failure
nondeterministically choose any \((m, \sigma) \in \text{active} \)
\omega \leftarrow \text{subtasks}(m). \sigma(\langle t_2, \ldots, t_k \rangle)
return TFD(s, \omega, O, M)
Expressivity Relative to Classical Planning

- Any classical planning planning problem can be translated into an ordered-task-planning problem in polynomial time.
- Several ways to do this. One is roughly as follows:
 - For each goal or precondition e, create a task t_e
 - For each operator o and effect e, create a method $m_{o,e}$
 - Task: t_e
 - Subtasks: $t_{c_1}, t_{c_2}, \ldots, t_{c_n}, o$, where c_1, c_2, \ldots, c_n are the preconditions of o
 - Partial-ordering constraints: each t_{c_i} precedes o
- There are HTN planning problems that cannot be translated into classical planning problems at all
- Example on the next page
Example

- Two methods:
 - No arguments
 - No preconditions

- Two operators, a and b
 - Again, no arguments and no preconditions

- Initial state is empty, initial task is t

- Set of solutions is \(\{a^n b^n \mid n > 0\} \)

- No classical planning problem has this set of solutions
 - The state-transition system is a finite-state automaton
 - No finite-state automaton can recognize \(\{a^n b^n \mid n > 0\} \)
Comparison to Forward and Backward Search

- In state-space planning, must choose whether to search forward or backward

- In HTN planning, there are two choices to make about direction:
 - forward or backward
 - up or down

- TFD goes down and forward
Comparison to Forward and Backward Search

- Like a backward search, TFD is goal-directed
 - Goals correspond to tasks
- Like a forward search, it generates actions in the same order in which they’ll be executed
 - Whenever we want to plan the next task
 - we’ve already planned everything that comes before it
 - Thus, we know the current state of the world
Increasing Expressivity Further

- Knowing the current state makes it easy to do things that would be difficult otherwise
 - States can be arbitrary data structures
 - Preconditions and effects can include
 - logical inferences (e.g., Horn clauses)
 - complex numeric computations
- e.g., SHOP:
 http://www.cs.umd.edu/projects/shop
Example

- Simple travel-planning domain
 - Go from one location to another
 - State-variable formulation
Planning Problem: I am at home, I have $20, I want to go to a park 8 miles away

Initial task: travel(me,home,park)

Precondition: distance(home,park) ≤ 2
Precondition fails

Precondition succeeds

Decomposition into subtasks

Initial state $s_0 = \{\text{location}(\text{me})=\text{home}, \text{cash}(\text{me})=20, \text{distance}(\text{home},\text{park})=8\}$

Subtasks:
- s_1: call-taxi(me,home)
 - Precond: ...
 - Effects: ...

- s_2: ride(me,home,park)
 - Precond: ...
 - Effects: ...

- s_3: pay-driver(me,home,park)
 - Precond: ...
 - Effects: ...

Final state $s_3 = \{\text{location}(\text{me})=\text{park}, \text{location}(\text{taxi})=\text{park}, \text{cash}(\text{me})=14.50, \text{distance}(\text{home},\text{park})=8\}$
Limitation of Ordered-Task Planning

- Cannot interleave subtasks of different tasks
- Sometimes this can make things awkward
- Need methods that reason globally instead of locally
Generalize the Methods

- Generalize methods to allow the subtasks to be partially ordered
- Consequence: plans may interleave subtasks of different tasks

- This makes the planning algorithm more complicated
Generalize TFD to interleave subtasks

$$\pi = \{a_1, \ldots, a_k\}; \ w = \{t_1, t_2, t_3, \ldots\}$$

operator instance a

$$\pi = \{a_1, \ldots, a_k, \ a\}; \ w' = \{t_2, t_3, \ldots\}$$

method instance m

$$w = \{t_1, t_2, \ldots\}$$

$$w' = \{u_1, \ldots, u_k, t_2, \ldots\}$$
Generalize TFD to interleave subtasks

\[w = \{ t_1, t_2, \ldots \} \]

\[w' = \{ u_1, \ldots, u_k, t_2, \ldots \} \]

- \(\delta(w, u, m, \sigma) \) has a complicated definition in the book. Here’s what it means:
 - We selected \(t_1 \) because it’s possible for \(t_1 \) to come first
 - We’re planning for \(t_1 \) under the assumption that it will come first
 - Insert ordering constraints to ensure it will come first
 - The same constraints also must apply to all subtasks of \(t_1 \)
Discussion

- PFD is sound and complete
- Can generalize in the same ways as TFD

- SHOP2: implementation of PFD-like algorithm + generalizations
 - Won one of the top four awards in the AIPS-2002 Planning Competition
 - Freeware, open source