Chapter 10

Control Rules in Planning
Motivation

- Often, planning can be done much more efficiently if we have domain-specific information.
- Example:
 - Classical planning is EXPSPACE-complete.
 - Block-stacking can be done in time $O(n^3)$.
- But we don’t want to have to write a new domain-specific planning system for each problem!

- *Domain-configurable* planning algorithm:
 - Domain-independent search engine.
 - Input includes the pruning rules for the domain.
Outline

- Language for writing domain-specific pruning rules
 - Based on modal logic

- Domain-configurable planning algorithm
 - Input includes the pruning rules for the domain

- Example: block stacking

```
Abstract-search(u)
  if Terminal(u) then return(u)
  u ← Refine(u) ;; refinement step
  B ← Branch(u) ;; branching step
  B' ← Prune(B) ;; pruning step
  if B' = ∅ then return(failure)
  nondeterministically choose v ∈ B'
  return(Abstract-search(v))
end
```

- Presentation similar to the chapter, but not identical
 - Based partly on TLPlan [Bacchus & Kabanza 2000]
First-order Logic and Modal Logics

- First Order Logic (FOL):
 - constant symbols, function symbols, predicate symbols
 - logical connectives (\(\lor, \land, \neg, \Rightarrow, \Leftrightarrow \)) and quantifiers (\(\forall, \exists \))
 - e.g., \(\text{on}(A,B) \land \text{on}(B,C) \)
 \(\exists x \ \text{on}(x,A) \)
 \(\forall x (\text{ontable}(x) \Rightarrow \text{clear}(x)) \)

- Model:
 - For our purposes, a world-state \(s \) that the formulas refer to
 - This is what gives the formulas meaning
 - \(s \models \text{on}(A,B) \) read “\(s \) satisfies \(\text{on}(A,B) \)” or “\(s \) models \(\text{on}(A,B) \)”
 - means that \(\text{on}(A,B) \) is true in the state \(s \)

- Modal logic: FOL plus \textit{modal operators}
 - to express concepts that would be difficult to express within FOL
Linear Temporal Logic

- **Linear Temporal Logic (LTL):**
 - Time is a sequence of instants 1, 2, 3, …
 - There is a sequence of states $\mathcal{M}=\langle s_0, s_1, \ldots \rangle$

- **Modal operators to refer to the states in which formulas are true:**
 - $\bigcirc f$ - *next* f - f holds in the next state, e.g., $\bigcirc \text{on}(A,B)$
 - $\lozenge f$ - *eventually* f - f either holds now or in some future state
 - $\Box f$ - *always* f - f holds now and in all future states
 - $f_1 \mathbf{U} f_2$ - f_1 until f_2 - f_2 either holds now or in some future state, and f_1 holds until then

- **Propositional constant symbols** TRUE and FALSE
Linear Temporal Logic (continued)

- Quantifiers cause problems with computability
 - Suppose \(f(x) \) is true for infinitely many values of \(x \)
 - Problem evaluating truth of \(\forall x \ f(x) \) and \(\exists x \ f(x) \)

- Bounded quantifiers
 - Let \(g(x) \) be such that \(\{ x : g(x) \} \) is finite and easily computed
 \[
 \forall [x:g(x)] \ f(x)
 \]
 - means \(\forall x \ (g(x) \Rightarrow f) \)
 - expands into \(f(x_1) \land f(x_2) \land \ldots \land f(x_n) \)

 \[
 \exists [x:g(x)] \ f(x)
 \]
 - means \(\exists x \ (g(x) \land f) \)
 - expands into \(f(x_1) \lor f(x_2) \lor \ldots \lor f(x_n) \)
Models for LTL

- A model is a triple \((M, s_i, V)\)
 - \(M = \langle s_0, s_1, \ldots \rangle\) is a sequence of states
 - \(s_i\) is the \(i\)'th state in \(M\),
 - \(V\) is a variable assignment function
 - a substitution that maps all variables into constants

- Write \((M, s_i, V) \models f\) to mean that \(V(f)\) is true in \(s_i\)

- Always require that
 \((M, s_i, V) \models \text{TRUE}\)
 \((M, s_i, V) \models \neg \text{FALSE}\)
Examples

- \((M,s_0,V) \models \Box \Box \text{on}(A,B) \)
 - \(A \) is on \(B \) in \(s_2 \), the 2nd state after \(s_0 \)

- Abbreviations:
 - \((M,s_0) \models \Box \Box \text{on}(A,B) \) no free variables, so \(V \) is irrelevant
 - \(M \models \Box \Box \text{on}(A,B) \) if no state specified, \(s_0 \) is the default

- \(M \models \Box \neg \text{holding}(C) \)
 - in every state in \(M \), we aren’t holding \(C \)

- \(M \models \Box (\text{on}(B, C) \Rightarrow (\text{on}(B, C) \cup \text{on}(A, B))) \)
 - whenever we enter a state in which \(B \) is on \(C \), \(B \) remains on \(C \) until \(A \) is on \(B \).
Augment the models to include a set of goal states G

$\text{GOAL}(f)$ - says f is true in every s in G.

$((M,s,I),G) \models \text{GOAL}(f) \iff (M,s,I) \models f$ for every $s \in G$
Blocks World - Example

- Blocks-world operators:

<table>
<thead>
<tr>
<th>Operator</th>
<th>Preconditions and Deletes</th>
<th>Adds</th>
</tr>
</thead>
<tbody>
<tr>
<td>pickup(x)</td>
<td>onto(x), clear(x), handempty.</td>
<td>holding(x).</td>
</tr>
<tr>
<td>putdown(x)</td>
<td>holding(x).</td>
<td>ontable(x), clear(x), handempty.</td>
</tr>
<tr>
<td>stack(x, y)</td>
<td>holding(x), clear(y).</td>
<td>on(x, y), clear(x), handempty.</td>
</tr>
<tr>
<td>unstack(x, y)</td>
<td>on(x, y), clear(x), handempty.</td>
<td>holding(x), clear(y).</td>
</tr>
</tbody>
</table>

A planning problem:

Initial State

```
E
A
B
C
D
F
```

Goal State

```
D
A
B
C
```
Blocks World - Example

- Basic idea:
 - A *goodtower* is one in which no blocks will ever need to be moved
 - Axioms to support this:

\[
goodtower(x) \iff clear(x) \land \neg \text{GOAL}(holding(x)) \land goodtowerbelow(x)
\]

\[
goodtowerbelow(x) \iff ((ontable(x) \land \neg \exists[y:\text{GOAL}(on(x, y))]) \lor
\exists[y:on(x, y)] \neg \text{GOAL}(ontable(x)) \land \neg \text{GOAL}(holding(y)) \land \neg \text{GOAL}(clear(y))
\land \forall[z:\text{GOAL}(on(x, z))] z = y \land \forall[z:\text{GOAL}(on(z, y))] z = x
\land goodtowerbelow(y))]
\]

- Unstacking B from C would violate this axiom
- B and C are good towers

```
Initial State

```
```
Goal State
D
A
B
C
E
A
B
C
D
F
```
Blocks World Example (continued)

- Three different control rules:

 - (1) Every good tower must always remain a good tower

 \[\square \left(\forall [x: \text{clear}(x)] \Rightarrow \bigcirc (\text{clear}(x) \lor \exists [y: \text{on}(y, x)] \text{goodtower}(y)) \right) \]

 - Unstacking B from C or putting anything but A on B will violate this.
 - Also, moving F, which is an irrelevant good tower will violate (1).
But, what about bad towers?

\[\text{badtower}(x) \Leftrightarrow [\text{clear}(x) \land \neg \text{goodtower}(x)] \]

(2) Never put anything onto a badtower

\[\Box \left(\forall [x: \text{clear}(x)] \ \text{goodtower}(x) \Rightarrow \circ (\text{clear}(x) \lor \exists [y: \text{on}(y, x)] \ \text{goodtower}(y) \land \text{badtower}(x) \Rightarrow \circ (\neg \exists [y: \text{on}(y, x)]) \right) \]

- with this a good sequence can only pickup blocks on top of bad towers
- the tower of blocks under E is a bad tower; so any action that stacks a block on E will violates the second conjunction of (2).
Blocks World Example (continued)

- (2) does not rule out all useless actions.
- In general, there is no point in picking up singleton bad tower blocks unless their final position is ready.
- There is no point in picking up D until we have stacked A on B.

- (3) never pick up a block from the table unless you can put it onto a good tower

\[\square (\forall [x: clear(x)] \text{goodtower}(x) \Rightarrow \circ (clear(x) \lor \exists [y: on(y, x)] \text{goodtower}(y)) \]
\[\land \text{badtower}(x) \Rightarrow \circ (\neg \exists [y: on(y, x)]) \]
\[\land (\text{ontable}(x) \land \exists [y: \text{GOAL(on(x, y))}] \neg \text{goodtower}(y)) \]
\[\Rightarrow \circ (\neg \text{holding}(x)) \]
The TLPlan procedure:

- Forward state-space search
- At each state, check whether the current path can lead to a plan in which every state satisfies the state’s control formula

Each state’s control formula is determined by *progression*

- Let s be a state, f be its control formula, and s^+ be any child of s
- Then the control formula for s^+ is $f^+ = \text{Progress}(s, f)$

 » Progression is defined on the next page
Procedure $\text{Progress}(f, s)$

Case

1. $f = \phi \in \mathcal{L}$ (i.e., ϕ contains no temporal modalities):

 $f^+ := \text{TRUE}$ if $s \models f$, \text{FALSE} otherwise.

2. $f = f_1 \land f_2$:

 $f^+ := \text{Progress}(f_1, s) \land \text{Progress}(f_2, s)$

3. $f = \neg f_1$:

 $f^+ := \neg \text{Progress}(f_1, s)$

4. $f = \Diamond f_1$:

 $f^+ := f_1$

5. $f = f_1 \lor f_2$:

 $f^+ := \text{Progress}(f_2, s) \lor (\text{Progress}(f_1, s) \land f)$

6. $f = \Diamond f_1$:

 $f^+ := \text{Progress}(f_1, s) \lor f$

7. $f = \Box f_1$:

 $f^+ := \text{Progress}(f_1, s) \land f$

8. $f = \forall [x : g(x)] f_1$:

 $f^+ := \land \left\{ \text{Progress}(\theta(f_1), s) : s \models g(c) \right\}$

9. $f = \exists [x : g(x)] f_1$:

 $f^+ := \lor \left\{ \text{Progress}(\theta(f_1), s) : s \models g(c) \right\}$

 where $\theta = \{x \leftarrow c\}$

Boolean simplification rules:

1. $[\text{FALSE} \land \phi] \land \phi \land \text{FALSE} \leftrightarrow \text{FALSE}$,

2. $[\text{TRUE} \land \phi] \land \phi \land \text{TRUE} \leftrightarrow \phi$,

3. $\neg \text{TRUE} \leftrightarrow \text{FALSE}$,

4. $\neg \text{FALSE} \leftrightarrow \text{TRUE}$.
Examples

- Suppose $f = \square \text{on}(A,B)$
 - $f^+ = \text{Progress}(\text{on}(A,B), s) \land \square \text{on}(A,B)$
 - If $\text{on}(A,B)$ is true in s then
 - $f^+ = \text{TRUE} \land \square \text{on}(A,B)$
 - simplifies to $\square \text{on}(A,B)$
 - If $\text{on}(A,B)$ is false in s then
 - $f^+ = \text{FALSE} \land \square \text{on}(A,B)$
 - simplifies to FALSE

- \square generates a test on the current state and propagates the test to the next state
Examples (continued)

- Suppose $f = \Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A))$
 - $f^+ = \text{Progress}[\Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A)), s]$
 - $= \text{Progress}[\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A), s] \land \Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A))$
 - If $\text{on}(A,B)$ is true in s, then
 - $f^+ = \text{clear}(A) \land \Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A))$
 - Since $\text{on}(A,B)$ is true in the current state, the next state must satisfy $\text{clear}(A)$
 - The “always” constraint is propagated to the next state
 - f^+ simplifies to $\text{clear}(A) \land \Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A))$
 - If $\text{on}(A,B)$ is false in s, then
 - $f^+ = \Box (\text{on}(A,B) \Rightarrow \Diamond \text{clear}(A))$
 - The constraint is simply propagated to the next state
Procedure TLPLAN(s, f, G, A, P)
 if s satisfies G then return P
 Let $f^+ = \text{Progress}(f, s)$
 if f^+ is FALSE return failure
 choose an action a from the set of actions A whose preconditions are satisfied in s
 if no such action exists return failure.
 Let s^+ be the world that arises from applying a to s
 return TLPLAN(s^+, f^+, G, A, P.a)

- Nondeterministic forward search
- Input includes a control formula f for the problem domain
- When we expand a state s, we progress its formula f through s, generating a new formula f^+
- If f^+ is false, s is a dead-end
- Otherwise, f^+ is the control formula for all of s’s children
Example

Never pick up a block x if x is not required to be on another block y

\[\square \left(\forall [x:\text{clear}(x)] \text{ontable}(x) \land \neg \exists [y:\text{GOAL}(\text{on}(x, y))] \Rightarrow \bigcirc (\neg \text{holding}(x)) \right) \]

Suppose that

\[s = \{ \text{ontable}(a), \text{ontable}(b), \text{clear}(a), \text{clear}(b) \} \]
\[g = \{ \text{on}(b, a) \} \]

For each clear block x in s, evaluate

\[\text{ontable}(x) \land \neg \exists [y:\text{GOAL}(\text{on}(x, y))] \Rightarrow \bigcirc (\neg \text{holding}(x)) \]

Progressed formula:

\[\neg \text{holding}(a) \land \square \left(\forall [x:\text{clear}(x)] \text{ontable}(x) \land \neg \exists [y:\text{GOAL}(\text{on}(x, y))] \Rightarrow \bigcirc (\neg \text{holding}(x)) \right) \]
Control 1 fails on 1 problem of size 11

Blocks-World Results

No Control (breadth-first)
Control 1
Control 2
Control 3
Control 3 (breadth-first)
Blocks-World Results

SatPlan fails on 3 problems of size 10

UCPOP fails on all problems of size 6

BlackBox fails on 1 problem of size 10

IPP fails on 2 problems of size 11 and 12 exceeds 1GB RAM on problems of size 13
Logistics- Domain Results

- IPP fails on problems of size > 9
- BlackBox fails on problems of size > 15
- Satplan fails on 2 problems of size 14 and 15
Discussion

- 2000 International Planning Competition
 - TALplanner: same kind of algorithm, different temporal logic
 » received the top award for a “hand-tailored” planner
 • *domain-configurable* is probably a better term
 - TLPlan won the same award in the 2002 International Planning Competition
- Both of them:
 - Ran several orders of magnitude faster than the “fully automated” planners
 » especially on large problems
 - Solved problems on which the fully-automated planners ran out of time/memory