Chapter 9
Heuristics in Planning
Planning as Nondeterministic Search

Abstract-search(u)

if Terminal(u) then return(u)

$u \leftarrow$ Refine(u) ;; refinement step

$B \leftarrow$ Branch(u) ;; branching step

$B' \leftarrow$ Prune(B) ;; pruning step

if $B' = \emptyset$ then return(failure)

nondeterministically choose $v \in B'$

return(Abstract-search(v))

end
Making it Deterministic

Depth-first-search(u)
 if Terminal(u) then return(u)
 $u \leftarrow \text{Refine}(u)$;; refinement step
 $B \leftarrow \text{Branch}(u)$;; branching step
 $C \leftarrow \text{Prune}(B)$;; pruning step
 while $C \neq \emptyset$ do
 $v \leftarrow \text{Select}(C)$;; node-selection step
 $C \leftarrow C - \{v\}$
 $\pi \leftarrow \text{Depth-first-search}(v)$
 if $\pi \neq \text{failure}$ then return(π)
 return(failure)
 end
Node-Selection Heuristic

- Suppose we’re searching a tree in which each edge \((s, s')\) has cost \(c(s, s')\)
 - If \(p\) is a path, let \(c(p)\) = sum of the edge costs
 - For classical planning, this is the length of \(p\)

- For every state \(s\), let
 - \(g(s)\) = cost of the path from \(s_0\) to \(s\)
 - \(h^*(s)\) = least cost of all paths from \(s\) to goal nodes
 - \(f^*(s) = g(s) + h^*(s)\) = least cost of all paths from \(s_0\) to goal nodes that go through \(s\)

- Suppose \(h(s)\) is an estimate of \(h^*(s)\)
 - Let \(f(s) = g(s) + h(s)\)
 - \(f(s)\) is an estimate of \(f^*(s)\)
 - \(h\) is admissible if for every state \(s\), \(0 \leq h(s) \leq h^*(s)\)
 - If \(h\) is admissible then \(f\) is a lower bound on \(f^*\)
The A* algorithm

- A* on trees:
 loop
 choose the leaf node s such that \(f(s) \) is smallest
 if \(s \) is solution then return it and exit
 else expand it (generate its children)

- On graphs, A* is more complicated
 ◆ additional machinery to deal with multiple paths to the same node

- If a solution exists (and certain other conditions are satisfied), then:
 ◆ if \(h(s) \) is admissible, then A* is guaranteed to find an optimal solution
 ◆ The more “informative” the heuristic is (i.e., the closer it is to \(h^* \)), the smaller the number of nodes A* expands
 ◆ If \(h(s) \) is within \(c \) of admissible, then A* is guaranteed to find a solution that’s within \(c \) of optimal
Heuristic Functions for Planning

- $\Delta^*(s, p)$: minimum distance from state s to a state containing p
- $\Delta^*(s, s')$: minimum distance from state s to a state containing every p in s'

- For $i = 0, 1, 2, \ldots$ we will define the following functions:
 - $\Delta_i(s, p)$: an estimate of $\Delta^*(s, p)$
 - $\Delta_i(s, s')$: an estimate of $\Delta^*(s, s')$
 - $h_i(s) = \Delta_i(s, g)$, where g is the goal
Heuristic Functions for Planning

- $\Delta_0(s, s') = \text{what we get if we pretend that}
 \begin{itemize}
 \item Negative preconditions and effects doesn’t exist
 \item The cost of achieving a set of preconditions $\{p_1, \ldots, p_n\}$ is the sum of the costs of achieving each p_i separately
 \end{itemize}

\begin{align}
\Delta_0(s, p) &= 0 & \text{if } p \in s, \\
\Delta_0(s, p) &= \infty & \text{if } \forall a \in A, p \notin \text{effects}^+(a), \text{ and } p \notin s, \\
\Delta_0(s, g) &= 0 & \text{if } g \subseteq s, \\
\text{otherwise:} & \\
\Delta_0(s, p) &= \min_a \{1 + \Delta_0(s, \text{precond}(a)) \mid p \in \text{effects}^+(a)\} \\
\Delta_0(s, g) &= \sum_{p \in g} \Delta_0(s, p)
\end{align}

- $\Delta_0(s, s')$ is not admissible, but we don’t care
 \begin{itemize}
 \item We’re going to do a depth-first search, not A*
 \end{itemize}
Computing Δ_0

- Given s, can compute $\Delta_0(s, p)$, for every proposition p:

$$\text{Delta}(s)$$

for each p do: if $p \in s$ then $\Delta_0(s, p) \leftarrow 0$, else $\Delta_0(s, p) \leftarrow \infty$

$U \leftarrow s$

iterate

for each a such that $\text{precond}(a) \subseteq U$ do

$U \leftarrow U \cup \text{effects}^+(a)$

for each $p \in \text{effects}^+(a)$ do

$\Delta_0(s, p) \leftarrow \min\{\Delta_0(s, p), 1 + \sum_{q \in \text{precond}(a)} \Delta_0(s, q)\}$

until no change occurs in the above updates

end

- From this, can compute $h(s) = \Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p)$
Heuristic Forward Search

Heuristic-forward-search(π, s, g, A)
 if s satisfies g then return π
 options ← \{a ∈ A | a applicable to s\}
 for each a ∈ options do Delta(γ(s, a))
 while options ≠ ∅ do
 a ← argmin\{Δ₀(γ(s, a), g) | a ∈ options\}
 options ← options − \{a\}
 π' ← Heuristic-forward-search(π.a, γ(s, a), g, A)
 if π' ≠ failure then return(π')
 return(failure)

- This is depth-first search; thus admissibility is irrelevant
- This is roughly how the HSP planner works
 - First successful use of an A*-style heuristic in classical planning
Heuristic Backward Search

- HSP can also search backward

```
Backward-search(π, s₀, g, A)
    if s₀ satisfies g then return(π)
    options ← {a ∈ A | a relevant for g}
    while options ≠ ∅ do
        a ← argmin{Δ₀(s₀, γ⁻¹(g, a)) | a ∈ options}
        options ← options − {a}
        π' ← Backward-search(a.π, s₀, γ⁻¹(g, a), A)
        if π' ≠ failure then return(π')
    return failure
end
```
An admissible Heuristic

\[\Delta_0(s, p) = 0 \quad \text{if } p \in s, \]
\[\Delta_0(s, p) = \infty \quad \text{if } \forall a \in A, p \not\in \text{effects}^+(a), \quad \text{and } p \not\in s, \]
\[\Delta_0(s, g) = 0 \quad \text{if } g \subseteq s, \]
otherwise:
\[\Delta_0(s, p) = \min_a \{1 + \Delta_0(s, \text{precond}(a)) \mid p \in \text{effects}^+(a)\} \]
\[\Delta_0(s, g) = \sum_{p \in g} \Delta_0(s, p) \]

- \(\Delta_1 \): like \(\Delta_0 \) except that \(\Delta_1(s, g) = \max_{p \in g} \Delta_0(s, p) \)
 - This heuristic is admissible; thus it could be used with A*
 - It is not very informative
A More Informed Heuristic

- Instead of computing the maximum distance to each p in g, compute the maximum distance to each pair $\{p, q\}$ in g:

\[
\Delta_2(s, p) = \min_a \{1 + \Delta_2(s, \text{precond}(a)) \mid p \in \text{effects}^+(a)\} \\
\Delta_2(s, \{p, q\}) = \min \{ \\
\quad \min_a \{1 + \Delta_2(s, \text{precond}(a)) \mid \{p, q\} \subseteq \text{effects}^+(a)\} \\
\quad \min_a \{1 + \Delta_2(s, \{q\} \cup \text{precond}(a)) \mid p \in \text{effects}^+(a)\} \\
\quad \min_a \{1 + \Delta_2(s, \{p\} \cup \text{precond}(a)) \mid q \in \text{effects}^+(a)\}\} \\
\Delta_2(s, g) = \max_{p, q} \{\Delta_2(s, \{p, q\}) \mid \{p, q\} \subseteq g\}
\]
More Generally, …

Recall that $\Delta^*(s, g)$ is the true minimal distance from a state s to a goal g. Δ^* can be computed (albeit at great computational cost) according to the following equations:

$$\Delta^*(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \text{ and} \\
\min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} & \text{otherwise.}
\end{cases} \quad (9.4)$$

From Δ^*, let us define the following family Δ_k, for $k \geq 1$, of heuristic estimates:

$$\Delta_k(s, g) = \begin{cases}
0 & \text{if } g \subseteq s, \\
\infty & \text{if } \forall a \in A, a \text{ is not relevant for } g, \\
\min_a \{1 + \Delta^*(s, \gamma^{-1}(g, a)) \mid a \text{ relevant for } g\} & \text{if } |g| \leq k, \\
\max_{g'} \{\Delta_k(s, g') \mid g' \subseteq g \text{ and } |g'| = k\} & \text{otherwise.}
\end{cases} \quad (9.5)$$
Complexity of Computing the Heuristic

- Takes time $\Theta(n^k)$, for a problem with n propositions
- If $k \geq \max(|g|, \max_a \{ |\text{precond}(a)| : a \text{ is an action} \})$ then computing $\Delta_k(s, g)$ is as hard as solving the entire planning problem
- Getting the heuristic values requires solving the planning problem first!
Get Heuristic Values from a Planning Graph

- Recall how GraphPlan works:
 loop
 \textit{Graph expansion:} this takes polynomial time
 extend a “planning graph” forward from the initial state
 until we have achieved a necessary (but insufficient)
 condition for plan existence

 \textit{Solution extraction:} this takes exponential time
 search backward from the goal, looking for a correct plan
 if we find one, then return it
 repeat
Using the Planning Graph to Compute $h(s)$

- In the graph, there are alternating layers of ground literals and actions.
- The number of “action” layers is a lower bound on the number of actions in the plan.
- Construct a planning graph, starting at s.
- $\Delta^G(s_0, p) = \text{level of the first layer that “possibly achieves” } p$.
- $\Delta^G(s_0, g)$ is very close to $\Delta_2(s_0, g)$:
 - $\Delta_2(s_0, g)$ counts each action individually with a cost of 1.
 - $\Delta^G(s_0, g)$ counts all the independent actions of a layer with a total cost of 1.
The FastForward Planner

- Use a heuristic function similar to $h(s) = \Delta^G(s_0, g)$

- Don’t want an A*-style search (takes too much memory)

- Instead, use a greedy procedure:

 until we have a solution, do

 expand the current state s

 $s :=$ the child of s for which $h(s)$ is smallest

 (i.e., the child we think is closest to a solution)

- Can’t guarantee how fast it will find a solution, or how good a solution it will find

 However, it works pretty well on many problems
Heuristics for Plan-Space Planning

- How to select the next flaw to work on?
Heuristics for Plan-Space Planning

● Need a refinement heuristic

```
Abstract-search(u)
    if Terminal(u) then return(u)
    u ← Refine(u) ;; refinement step
    B ← Branch(u) ;; branching step
    B' ← Prune(B) ;; pruning step
    if B' = ∅ then return(failure)
    nondeterministically choose v ∈ B'
    return(Abstract-search(v))
end
```
One Possible Heuristic

- Fewest Alternative First (FAF)
Serializing and AND/OR Tree

- The search space is an AND/OR tree

- Deciding what flaw to work on next = serializing this tree (turning it into a state-space tree)
 - at each AND branch, choose a child to expand next, and delay expanding the other children
One Serialization
Another Serialization
Why Does This Matter?

- Different refinement strategies produce different serializations
 - the search spaces have different numbers of nodes
- In the worst case, the planner will search the entire serialized search space
- The smaller the serialization, the more likely that the planner will be efficient

- One pretty good heuristic: fewest alternatives first
How Much Difference Can the Refinement Strategy Make?

- Case study: build an AND/OR graph from repeated occurrences of this pattern:

- Example:
 - number of levels $k = 3$
 - branching factor $b = 2$

- Analysis:
 - Total number of nodes in the AND/OR graph is $n = \Theta(b^k)$
 - How many nodes in the best and worst serializations?
The best serialization contains $\Theta(b^k)$ nodes
The worst serialization contains $\Theta(2^k b^2k)$ nodes

- The size differs by an exponential factor, but the best serialization still is exponentially large
- To do better, need good node selection, branching, pruning