Machine Translation

J&M’s Chapter 25
Machine Translation

- Automatically translate one natural language into another.

Mary didn’t slap the green witch.

Maria no dió una bofetada a la bruja verde.
Ambiguity Resolution is Required for Translation

• Syntactic and semantic ambiguities must be properly resolved for correct translation:
 – “John plays the guitar.” → “John gitar minavazad.”
 – “John plays soccer.” → “John football bazi mikonad.”

• An early MT system gave the following results when translating from English to Russian and then back to English:
 – “The spirit is willing but the flesh is weak.” ⇒ “The liquor is good but the meat is spoiled.”
 – “Out of sight, out of mind.” ⇒ “Invisible idiot.”
• Shows mapping between words in one language and the other.

Mary didn’t slap the green witch.

Maria no dió una bofetada a la bruja verde.

Mary not give a slap to the witch green
Translation Quality

• Achieving literary quality translation is very difficult.
• Existing MT systems can generate rough translations that frequently at least convey the gist of a document.
• High quality translations possible when specialized to narrow domains, e.g., weather forecasts.
• Some MT systems used in *computer-aided translation* in which a bilingual human *post-edits* the output to produce more readable accurate translations.
• Frequently used to aid *localization* of software interfaces and documentation to adapt them to other languages.
Linguistic Issues Making MT Difficult

- Morphological issues with *isolating* (e.g., Vietnamese) vs. *polysynthetic* (e.g., Eskimo), and *agglutinative* (e.g., Turkish) VS. *fusion* (e.g., Russian) languages.

- Syntactic variation between *SVO* (e.g., English), *SOV* (e.g., Persian), and *VSO* (e.g., Arabic) languages.
 - SVO languages use prepositions
 - SOV languages use postpositions

- *Pro-drop* languages regularly omit subjects that must be inferred.
Lexical Gaps

• Some words in one language do not have a corresponding term in the other.
 • Rivière (river that flows into ocean) and fleuve (river that does not flow into ocean) in French
 • Schedenfraude (feeling good about another’s pain) in German.
 • Oyakoko (filial piety: devoting to parents) in Japanese
Relation between English leg, foot, and paw, to the French jambe, pied, patte, and etape
Vauquois Triangle

Interlingua

Semantic structure

Syntactic structure

Words

Source Language

Target Language

Semantic Analysis

Conceptual Analysis

Semantic Transfer

Syntactic Transfer

Direct translation

Morphological Analysis

Morphological Generation

Conceptual Generation

Semantic Generation

Syntactic Generation
Direct Transfer

- **Morphological Analysis**
 - Mary didn’t slap the green witch. →
 Mary DO-PAST not slap the green witch.

- **Lexical Transfer**
 - Mary DO-PAST not slap the green witch.
 - Maria PAST no dar una bofetada a la verde bruja.

- **Lexical Reordering**
 - Maria no dar:PAST una bofetada a la bruja verde.

- **Morphological generation**
 - Maria no dió una bofetada a la bruja verde.
Simple lexical reordering does not adequately handle more dramatic reordering such as that required to translate from an SVO to an SOV language.

Need syntactic transfer rules that map parse tree for one language into one for another.

- **English to Spanish:**
 - NP → Adj Noun ⇒ NP → Noun Adj

- **English to Japanese:**
 - VP → V NP ⇒ VP → NP V
 - PP → P NP ⇒ PP → NP P
Syntactic transformation from English (SVO) to Japanese (SOV)
A further sketch of the transfer approach
Semantic Transfer

• Some transfer requires semantic information.
• Semantic roles can determine how to properly express information in another language.
• In Chinese, PPs that express a goal, destination, or benefactor occur *before* the verb but those expressing a recipient occur *after* the verb.
• Transfer Rule
 – English to Chinese
 • $\text{VP} \rightarrow \text{V PP}[^+\text{Goal}] \Rightarrow \text{VP} \rightarrow \text{PP}[^+\text{Goal}] \text{ V}$
Chinese Goal PPs often occur preverbally.

Jackie Chan went to Hong Kong.
Interlingua representation of

Mary did not slap the green witch.
Statistical MT

- Manually encoding comprehensive bilingual lexicons and transfer rules is difficult.
- SMT acquires knowledge needed for translation from a parallel corpus that contains the same set of documents in two languages.
- The Canadian parliamentary proceedings in French and English is a well-known parallel corpus.
- First align the sentences in the corpus based on simple methods.
Picking a Good Translation

• A good translation should be **faithful** and correctly convey the information and tone of the original source sentence.

• A good translation should also be **fluent**, grammatically well structured and readable in the target language.

• Final objective:

\[
T_{best} = \arg\max_{T \in \text{Target}} \text{faithful\,ne\,ss}(T, S) \cdot \text{fluency}(T)
\]
Noisy Channel Model

- **GENERATIVE DIRECTION**
 - "CHANNEL SOURCE E"
 - E: Mary did not slap the green witch
 - P(E)

- **NOISY CHANNEL**
 - P(F|E)

- **CHANNEL OUTPUT F**
 - F: Maria no dió una bofetada a la bruja verde

- **BEST TARGET LANGUAGE SENTENCE E**
- **ARGMAX**
- **DECODING DIRECTION**
- **LANGUAGE MODEL P(E)**
- **TRANSLATION MODEL P(F|E)**
Bayesian Analysis of Noisy Channel

\[
\hat{E} = \arg\max_{E \in \text{English}} P(E | F) = \arg\max_{E \in \text{English}} \frac{P(F | E)P(E)}{P(F)} = \arg\max_{E \in \text{English}} P(F | E)P(E)
\]

Translation Model Language Model

A **decoder** determines the most probable translation \(\hat{E} \) given \(F \)
Language Model

- Use a standard n-gram language model for $P(E)$.
- Can be trained on a large, unsupervised monolingual corpus for the target language E.
- Could use a more sophisticated PCFG language model to capture long-distance dependencies.
Translation Probabilities

• Assuming a *phrase aligned* parallel corpus is available or constructed that shows matching between phrases in E and F.

• Then compute (MLE) estimate of ϕ based on simple frequency counts.

$$\phi(\overline{f}, \overline{e}) = \frac{\text{count}(\overline{f}, \overline{e})}{\sum_{\overline{f}} \text{count}(\overline{f}, \overline{e})}$$
Evaluating MT

• Human subjective evaluation is the best but is time-consuming and expensive.
• Automated evaluation comparing the output to multiple human reference translations is cheaper and correlates with human judgments.
Computer-Aided Translation Evaluation

- **Edit cost**: Measure the number of changes that a human translator must make to correct the MT output.
 - Number of words changed
 - Amount of time taken to edit
 - Number of keystrokes needed to edit
Automatic Evaluation of MT

- Collect one or more human *reference translations* of the source.
- Compare MT output to these reference translations.
- Score result based on similarity to the reference translations.
 - BLEU
 - NIST
 - TER
 - METEOR
BLEU

• Determine number of n-grams of various sizes that the MT output shares with the reference translations.
• Compute a modified precision measure of the n-grams in MT result.
BLEU Example

Cand 1: Mary no slap the witch green
Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 1 Unigram Precision: 5/6
BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 1 Bigram Precision: 1/5
BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2:Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Clip match count of each n-gram to maximum count of the n-gram in any single reference translation

Cand 2 Unigram Precision: 7/10
BLEU Example

Cand 1: Mary no slap the witch green.
Cand 2: Mary did not give a smack to a green witch.

Ref 1: Mary did not slap the green witch.
Ref 2: Mary did not smack the green witch.
Ref 3: Mary did not hit a green sorceress.

Cand 2 Bigram Precision: 4/9
Modified N-Gram Precision

- Average n-gram precision over all n-grams up to size N (typically 4) using geometric mean.

$$p_n = \frac{\sum_{C\in \text{corpus}} \sum_{n-gram \in C} \text{count}_{\text{clip}} \ (n - \text{gram})}{\sum_{C\in \text{corpus}} \sum_{n-gram \in C} \text{count} \ (n - \text{gram})}$$

$$p = \sqrt[N]{\prod_{n=1}^{N} p_n}$$

Cand 1:

$$p = \sqrt{\frac{5}{6} \cdot \frac{1}{5}} = 0.408$$

Cand 2:

$$p = \sqrt{\frac{7}{10} \cdot \frac{4}{9}} = 0.558$$
Brevity Penalty

• Not easy to compute recall to complement precision since there are multiple alternative gold-standard references and don’t need to match all of them.

• Instead, use a penalty for translations that are shorter than the reference translations.

• Define effective reference length, r, for each sentence as the length of the reference sentence with the largest number of n-gram matches. Let c be the candidate sentence length.

$$BP = \begin{cases} 1 & \text{if } c > r \\ e^{(1-r/c)} & \text{if } c \leq r \end{cases}$$
BLEU Score

- Final BLEU Score: \(\text{BLEU} = BP \times \rho \)

 Cand 1: Mary no slap the witch green.
 Best Ref: Mary did not slap the green witch.

 \[
 c = 6, \quad r = 7, \quad BP = e^{(1-7/6)} = 0.846 \\
 \text{BLEU} = 0.846 \times 0.408 = 0.345
 \]

 Cand 2: Mary did not give a smack to a green witch.
 Best Ref: Mary did not smack the green witch.

 \[
 c = 10, \quad r = 7, \quad BP = 1 \\
 \text{BLEU} = 1 \times 0.558 = 0.558
 \]