Spelling Correction and the Noisy Channel

The Spelling Correction Task

(Reading: J+M 5.9)
Applications for spelling correction

Word processing

Web search

Phones

Showing results for natural language processing
Search instead for natural language processing
Spelling Tasks

• Spelling Error Detection

• Spelling Error Correction:
 • Autocorrect
 • hte → the
 • Suggest a correction
 • Suggestion lists
Types of spelling errors

• Non-word Errors
 • graffe → giraffe

• Real-word Errors
 • Typographical errors
 • three → there
 • Cognitive Errors (homophones)
 • piece → peace,
 • too → two
Non-word spelling errors

• Non-word spelling error detection:
 • Any word not in a **dictionary** is an error
 • The larger the dictionary the better

• Non-word spelling error correction:
 • Generate **candidates**: real words that are similar to error
 • Choose the one which is best:
 • Shortest weighted edit distance
 • Highest noisy channel probability
Real word spelling errors

• For each word w, generate candidate set:
 • Find candidate words with similar *pronunciations*
 • Find candidate words with similar *spelling*
 • Include w in candidate set

• Choose best candidate
 • Noisy Channel
 • Classifier
Spelling Correction and the Noisy Channel

The Noisy Channel Model of Spelling
Noisy Channel Intuition
Noisy Channel

- We see an observation x of a misspelled word
- Find the correct word w

$$
\hat{w} = \arg\max_{w \in V} P(w | x)
$$

$$
= \arg\max_{w \in V} \frac{P(x | w)P(w)}{P(x)}
$$

$$
= \arg\max_{w \in V} P(x | w)P(w)
$$
Non-word spelling error example

acress
Candidate generation

- Words with similar spelling
 - Small edit distance to error
- Words with similar pronunciation
 - Small edit distance of pronunciation to error
Damerau-Levenshtein edit distance

- Minimal edit distance between two strings, where edits are:
 - Insertion
 - Deletion
 - Substitution
 - Transposition of two adjacent letters
Words within 1 of across

<table>
<thead>
<tr>
<th>Error</th>
<th>Candidate Correction</th>
<th>Correct Letter</th>
<th>Error Letter</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>across</td>
<td>actress</td>
<td>t</td>
<td>–</td>
<td>deletion</td>
</tr>
<tr>
<td>across</td>
<td>cress</td>
<td>–</td>
<td>a</td>
<td>insertion</td>
</tr>
<tr>
<td>across</td>
<td>caress</td>
<td>ca</td>
<td>ac</td>
<td>transposition</td>
</tr>
<tr>
<td>across</td>
<td>access</td>
<td>c</td>
<td>r</td>
<td>substitution</td>
</tr>
<tr>
<td>across</td>
<td>across</td>
<td>o</td>
<td>e</td>
<td>substitution</td>
</tr>
<tr>
<td>across</td>
<td>acres</td>
<td>–</td>
<td>s</td>
<td>insertion</td>
</tr>
<tr>
<td>across</td>
<td>acres</td>
<td>–</td>
<td>s</td>
<td>insertion</td>
</tr>
</tbody>
</table>
Candidate generation

• 80% of errors are within edit distance 1
• Almost all errors within edit distance 2

• Also allow insertion of space or hyphen
 • thisidea → this idea
 • inlaw → in-law
Language Model

- Use any of the language modeling algorithms we’ve learned
- Unigram, bigram, trigram
- Web-scale spelling correction
 - Stupid backoff
Unigram Prior probability

Counts from 404,253,213 words in Corpus of Contemporary English (COCA)

<table>
<thead>
<tr>
<th>word</th>
<th>Frequency of word</th>
<th>P(word)</th>
</tr>
</thead>
<tbody>
<tr>
<td>actress</td>
<td>9,321</td>
<td>.0000230573</td>
</tr>
<tr>
<td>cress</td>
<td>220</td>
<td>.0000005442</td>
</tr>
<tr>
<td>caress</td>
<td>686</td>
<td>.0000016969</td>
</tr>
<tr>
<td>access</td>
<td>37,038</td>
<td>.0000916207</td>
</tr>
<tr>
<td>across</td>
<td>120,844</td>
<td>.0002989314</td>
</tr>
<tr>
<td>acres</td>
<td>12,874</td>
<td>.0000318463</td>
</tr>
</tbody>
</table>
Channel model probability

- Error model probability, Edit probability
- *Kernighan, Church, Gale* 1990

- Misspelled word $x = x_1, x_2, x_3... x_m$
- Correct word $w = w_1, w_2, w_3..., w_n$

- $P(x \mid w) = \text{probability of the edit}$
 - (deletion/insertion/substitution/transposition)
Computing error probability: confusion matrix

del[x,y]: \text{count}(xy \text{ typed as } x)

ins[x,y]: \text{count}(x \text{ typed as } xy)

sub[x,y]: \text{count}(x \text{ typed as } y)

trans[x,y]: \text{count}(xy \text{ typed as } yx)

Insertion and deletion conditioned on previous character
Confusion matrix for spelling errors

sub\[X, Y\] = Substitution of X (incorrect) for Y (correct)

Y (correct)	a	b	c	d	e	f	g	h	i	j	k	l	m	n	o	p	q	r	s	t	u	v	w	x	y	z	
a	0	0	7	1	342	0	0	2	118	0	1	0	0	3	76	0	0	1	35	9	9	0	1	0	5	0	
b	0	0	9	9	2	2	3	1	0	0	0	0	5	11	5	0	10	0	0	2	1	0	0	8	0	0	0
c	0	6	5	0	16	0	9	5	0	0	0	1	0	7	9	1	10	2	5	39	40	1	3	7	1	1	0
d	1	10	13	0	12	0	5	5	0	0	2	3	7	3	0	1	0	43	30	22	0	0	4	0	2	0	
e	388	0	3	11	0	2	2	0	89	0	0	3	0	5	93	0	0	14	12	6	15	0	1	0	18	0	
f	0	15	0	3	1	0	5	2	0	0	0	0	3	4	1	0	0	6	4	12	0	0	2	0	0	0	
g	4	1	11	11	9	2	0	0	0	0	1	1	3	0	0	2	1	3	5	13	21	0	0	1	0	3	0
h	1	8	0	3	0	0	0	0	0	2	0	12	14	2	3	0	3	1	11	0	0	2	0	0	0		
i	103	0	0	0	146	0	1	0	0	0	6	0	0	49	0	0	0	2	1	47	0	2	1	15	0		
j	0	1	1	9	0	0	1	0	0	0	0	2	1	0	0	0	0	0	5	0	0	0	0	0	0		
k	1	2	8	4	1	1	2	5	0	0	0	5	0	2	0	0	0	6	0	0	0	0	0	0	0		
l	2	10	1	4	0	4	5	6	13	0	1	0	0	14	2	5	0	11	10	2	0	0	0	0	0	0	
m	1	3	7	8	0	0	2	0	6	0	0	4	4	0	180	0	6	0	0	9	15	13	3	2	2	3	0
n	2	7	6	5	3	0	1	19	1	0	4	35	78	0	0	7	0	28	5	7	0	0	1	2	0	2	
o	91	1	1	3	116	0	0	0	25	0	2	0	0	0	14	0	2	4	14	39	0	0	0	18	0		
p	0	11	1	2	0	6	5	0	2	9	0	2	7	6	15	0	0	1	3	6	0	4	1	0	0		
q	0	0	1	0	0	0	0	27	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
r	0	14	0	30	12	2	2	8	2	0	5	8	4	20	1	14	0	0	12	22	4	0	0	1	0	0	
s	11	8	33	35	4	0	1	0	1	0	27	0	6	1	7	0	14	0	15	0	0	5	3	20	1		
t	3	4	9	42	7	5	19	5	0	1	0	14	9	5	5	6	0	11	37	0	0	2	19	0	7	6	
u	20	0	0	0	44	0	0	0	64	0	0	0	0	2	43	0	0	4	0	0	0	0	2	0	8	0	
v	0	0	7	0	0	3	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0		
w	2	2	1	0	1	0	2	0	0	1	0	0	0	0	0	0	0	7	6	3	3	1	0	0	0		
x	0	0	0	2	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		
y	0	0	2	0	15	0	1	7	15	0	0	0	2	0	6	1	0	7	36	8	5	0	0	1	0	0	
z	0	0	0	7	0	0	0	0	0	0	0	0	0	0	7	5	0	0	0	2	21	3	0	0	0	3	0
Generating the confusion matrix

- Peter Norvig’s list of errors
- Peter Norvig’s list of counts of single-edit errors
Channel model

\[P(x|w) = \begin{cases}
\frac{\text{del}[w_{i-1},w_i]}{\text{count}[w_{i-1}w_i]}, & \text{if deletion} \\
\frac{\text{ins}[w_{i-1},x_i]}{\text{count}[w_{i-1}]}, & \text{if insertion} \\
\frac{\text{sub}[x_i,w_i]}{\text{count}[w_i]}, & \text{if substitution} \\
\frac{\text{trans}[w_i,w_{i+1}]}{\text{count}[w_iw_{i+1}]}, & \text{if transposition}
\end{cases} \]
Channel model for *acress*

| Candidate Correction | Correct Letter | Error Letter | x|w | P(x|word) |
|----------------------|----------------|--------------|---|----------------|
| actress | t | - | c|ct | .000117 |
| cress | - | a | a|# | .00000144 |
| caress | ca | ac | ac|ca | .00000164 |
| access | c | r | r|c | .000000209 |
| across | o | e | e|o | .0000093 |
| acres | - | s | es|e | .0000321 |
| acres | - | s | ss|s | .0000342 |
Noisy channel probability for *acress*

| Candidate Correction | Correct Letter | Error Letter | x|w | P(x|word) | P(word) | 10^9 *P(x|w)P(w) |
|----------------------|----------------|--------------|----------------|----------------|----------------|----------------|
| actress | t | – | c|ct | .000117 | .0000231 | 2.7 |
| cress | – | a | a|# | .00000144 | .00000544 | .00078 |
| caress | ca | ac | ac|ca | .00000164 | .0000170 | .0028 |
| access | c | r | r|c | .00000209 | .0000916 | .019 |
| across | o | e | e|o | .0000093 | .000299 | 2.8 |
| acres | – | s | es|e | .0000321 | .000318 | 1.0 |
| acres | – | s | ss|s | .0000342 | .000318 | 1.0 |
Noisy channel probability for *across*

<table>
<thead>
<tr>
<th>Candidate Correction</th>
<th>Correct Letter</th>
<th>Error Letter</th>
<th>(x \mid w)</th>
<th>(P(x \mid \text{word}))</th>
<th>(P(\text{word}))</th>
<th>(10^9 \times P(x \mid w)P(w))</th>
</tr>
</thead>
<tbody>
<tr>
<td>actress</td>
<td>t</td>
<td>-</td>
<td>c \mid ct</td>
<td>.000117</td>
<td>.0000231</td>
<td>2.7</td>
</tr>
<tr>
<td>cress</td>
<td>-</td>
<td>a</td>
<td>a \mid #</td>
<td>.00000144</td>
<td>.000000544</td>
<td>.00078</td>
</tr>
<tr>
<td>caress</td>
<td>ca</td>
<td>ac</td>
<td>ac \mid ca</td>
<td>.00000164</td>
<td>.00000170</td>
<td>.0028</td>
</tr>
<tr>
<td>access</td>
<td>c</td>
<td>r</td>
<td>r \mid c</td>
<td>.000000209</td>
<td>.0000916</td>
<td>.019</td>
</tr>
<tr>
<td>across</td>
<td>o</td>
<td>e</td>
<td>e \mid o</td>
<td>.0000093</td>
<td>.000299</td>
<td>2.8</td>
</tr>
<tr>
<td>acres</td>
<td>-</td>
<td>s</td>
<td>es \mid e</td>
<td>.0000321</td>
<td>.0000318</td>
<td>1.0</td>
</tr>
<tr>
<td>acres</td>
<td>-</td>
<td>s</td>
<td>ss \mid s</td>
<td>.0000342</td>
<td>.0000318</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Using a bigram language model

• “a stellar and versatile across whose combination of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 smoothing
 • $P(\text{actress}|\text{versatile}) = 0.000021$ $P(\text{whose}|\text{actress}) = 0.0010$
 • $P(\text{across}|\text{versatile}) = 0.000021$ $P(\text{whose}|\text{across}) = 0.000006$

• $P(“\text{versatile actress whose”}) = 0.000021 \times 0.0010 = 210 \times 10^{-10}$
• $P(“\text{versatile across whose”}) = 0.000021 \times 0.000006 = 1 \times 10^{-10}$
Using a bigram language model

• “a stellar and versatile across whose combination of sass and glamour…”

• Counts from the Corpus of Contemporary American English with add-1 smoothing
 • \(P(\text{actress}|\text{versatile}) = 0.00021 \) \(P(\text{whose}|\text{actress}) = 0.0010 \)
 • \(P(\text{across}|\text{versatile}) = 0.00021 \) \(P(\text{whose}|\text{across}) = 0.000006 \)

• \(P(\text{“versatile actress whose”}) = 0.00021 \times 0.0010 = 210 \times 10^{-10} \)
• \(P(\text{“versatile across whose”}) = 0.00021 \times 0.000006 = 1 \times 10^{-10} \)
Spelling Correction and the Noisy Channel

Real-Word Spelling Correction
Real-word spelling errors

- ...leaving in about fifteen *minuets* to go to her house.
- The design *an* construction of the system...
- Can they *lave* him my messages?
- The study was conducted mainly *be* John Black.

- 25-40% of spelling errors are real words Kukich 1992
Solving real-world spelling errors

• For each word in sentence
 • Generate *candidate set*
 • the word itself
 • all single-letter edits that are English words
 • words that are homophones
• Choose best candidates
 • Noisy channel model
 • Task-specific classifier
Noisy channel for real-word spell correction

• Given a sentence $w_1, w_2, w_3, \ldots, w_n$

• Generate a set of candidates for each word w_i
 • Candidate(w_1) = \{ $w_1, w'_1, w''_1, w'''_1,...$ \}
 • Candidate(w_2) = \{ $w_2, w'_2, w''_2, w'''_2,...$ \}
 • Candidate(w_n) = \{ $w_n, w'_n, w''_n, w'''_n,...$ \}

• Choose the sequence W that maximizes $P(W)$
Noisy channel for real-word spell correction
Noisy channel for real-word spell correction

two → of → thew → ...
to → tao → off → threw
too → on → threw

two → of → thaw
the
Simplification: One error per sentence

- Out of all possible sentences with one word replaced
 - w_1, w''_2, w_3, w_4 two off thew
 - w_1, w_2, w'_3, w_4 two of the
 - w'''_1, w_2, w_3, w_4 too of thew
 - ...

- Choose the sequence W that maximizes $P(W)$
Where to get the probabilities

- **Language model**
 - Unigram
 - Bigram
 - Etc

- **Channel model**
 - Same as for non-word spelling correction
 - Plus need probability for no error, \(P(w|w) \)
Probability of no error

• What is the channel probability for a correctly typed word?
• $P(\text{“the”} | \text{“the”})$

• Obviously this depends on the application
 • .90 (1 error in 10 words)
 • .95 (1 error in 20 words)
 • .99 (1 error in 100 words)
 • .995 (1 error in 200 words)
Peter Norvig’s “thew” example

| x | w | x|w | P(x|w) | P(w) | $10^9 P(x|w)P(w)$ |
|------|------|-----|-----|-------|--------|------------------|
| thew | the | ew|e | 0.000007 | 0.02 | 144 |
| thew | thew | | | 0.95 | 0.00000009 | 90 |
| thew | thaw | e|a | 0.001 | 0.0000007 | 0.7 |
| thew | threw | h|hr | 0.000008 | 0.000004 | 0.03 |
| thew | thwe | ew|we | 0.000003 | 0.00000004 | 0.0001 |
Spelling Correction and the Noisy Channel

State-of-the-art Systems
HCI issues in spelling

• If very confident in correction
 • Autocorrect

• Less confident
 • Give the best correction

• Less confident
 • Give a correction list

• Unconfident
 • Just flag as an error
State of the art noisy channel

• We never just multiply the prior and the error model
• Independence assumptions \rightarrow probabilities not commensurate
• Instead: Weigh them

$$\hat{w} = \arg \max_{w \in \mathcal{V}} P(x | w) P(w)^\lambda$$

• Learn λ from a development test set
Phonetic error model

- Metaphone, used in GNU aspell
 - Convert misspelling to metaphone pronunciation
 - “Drop duplicate adjacent letters, except for C.”
 - “If the word begins with 'KN', 'GN', 'PN', 'AE', 'WR', drop the first letter.”
 - “Drop 'B' if after 'M' and if it is at the end of the word”
 - ...
 - Find words whose pronunciation is 1-2 edit distance from misspelling’s
 - Score result list
 - Weighted edit distance of candidate to misspelling
 - Edit distance of candidate pronunciation to misspelling pronunciation
Improvements to channel model

• Allow richer edits \textit{(Brill and Moore 2000)}
 • ent\rightarrow ant
 • ph\rightarrow f
 • le\rightarrow al

• Incorporate pronunciation into channel \textit{(Toutanova and Moore 2002)}
Channel model

• Factors that could influence p(misspelling | word)
 • The source letter
 • The target letter
 • Surrounding letters
 • The position in the word
 • Nearby keys on the keyboard
 • Homology on the keyboard
 • Pronunciations
 • Likely morpheme transformations
Nearby keys
Classifier-based methods for real-word spelling correction

• Instead of just channel model and language model
• Use many features in a classifier (next lecture).
• Build a classifier for a specific pair like:

 whether/weather

 • “cloudy” within +- 10 words
 • ___ to VERB
 • ___ or not