Register Allocation

Lecture 13
Back-End (Revisited)

Back-End:

• Translate IR into machine code

• Choose instructions for each IR operation

• Decide what to keep in registers at each point
The Register Allocation Problem

• Intermediate code uses unlimited temporaries
 - Simplifies code generation and optimization
 - Complicates final translation to assembly

• Typical intermediate code uses too many temporaries
The Register Allocation Problem (Cont.)

• The problem:

 Rewrite the intermediate code to use no more temporaries than there are machine registers

• Method:
 - Assign multiple temporaries to each register
 - But without changing the program behavior
An Example

- Consider the program

 \[
 a := c + d \\
 e := a + b \\
 f := e - 1
 \]

- Assume \(a \) and \(e \) dead after use
 - Temporary \(a \) can be “reused” after \(e := a + b \)
 - So can temporary \(e \)

- Can allocate \(a \), \(e \), and \(f \) all to one register \((r_1)\):

 \[
 r_1 := r_2 + r_3 \\
 r_1 := r_1 + r_4 \\
 r_1 := r_1 - 1
 \]

- A dead temporary is not needed
 - A dead temporary can be reused

Prof. Aiken
History

• Register allocation is as old as compilers
 - Register allocation was used in the original FORTRAN compiler in the ‘50s
 - Very crude algorithms

• A breakthrough came in 1980
 - Register allocation scheme based on graph coloring
 - Relatively simple, global and works well in practice
The Idea

Temporaries t_1 and t_2 can share the same register if at any point in the program at most one of t_1 or t_2 is live.

Or

If t_1 and t_2 are live at the same time, they cannot share a register
Algorithm: Part I

- Compute live variables for each point:

\[
\begin{align*}
 a &:= b + c \\
 d &:= -a \\
 e &:= d + f \\
 f &:= 2 \times e \\
 b &:= f + c \\
 e &:= e - 1
\end{align*}
\]
The Register Interference Graph

• Construct an undirected graph
 - A node for each temporary
 - An edge between t_1 and t_2 if they are live simultaneously at some point in the program

• This is the register interference graph (RIG)
 - Two temporaries can be allocated to the same register if there is no edge connecting them
Example

• For our example:

 • E.g., b and c cannot be in the same register
 • E.g., b and d could be in the same register
Notes on Register Interference Graphs

• Extracts exactly the information needed to characterize legal register assignments

• Gives a global (i.e., over the entire flow graph) picture of the register requirements

• After RIG construction the register allocation algorithm is architecture independent
 - It does not depend on any property of the machine except for the number of registers
Definitions

• A **coloring of a graph** is an assignment of colors to nodes, such that nodes connected by an edge have different colors.

• A graph is **k-colorable** if it has a coloring with **k** colors.
Register Allocation Through Graph Coloring

- In our problem, colors = registers
 - We need to assign colors (registers) to graph nodes (temporaries)

- Let \(k = \) number of machine registers

- If the RIG is \(k \)-colorable then there is a register assignment that uses no more than \(k \) registers
Graph Coloring Example

• Consider the example RIG

• There is no coloring with less than 4 colors
• There are 4-colorings of this graph
Example Review

\[
\begin{align*}
a &:= b + c \\
d &:= -a \\
e &:= d + f \\
f &:= 2 \times e \\
b &:= d + e \\
e &:= e - 1
\end{align*}
\]
Example After Register Allocation

- Under this coloring the code becomes:

```
r_2 := r_3 + r_4
r_3 := -r_2
r_2 := r_3 + r_1

r_1 := 2 * r_2
r_3 := r_3 + r_2
r_2 := r_2 - 1

r_3 := r_1 + r_4
```
Computing Graph Colorings

• How do we compute graph colorings?

• It isn’t easy:
 1. This problem is very hard (NP-hard). No efficient algorithms are known.
 - Solution: use heuristics
 2. A coloring might not exist for a given number of registers
 - Solution: later
Graph Coloring Heuristic

- **Observation:**
 - Pick a node \dagger with fewer than k neighbors in RIG
 - Eliminate \dagger and its edges from RIG
 - If resulting graph is k-colorable, then so is the original graph

- **Why?**
 - Let c_1,\ldots,c_n be the colors assigned to the neighbors of \dagger in the reduced graph
 - Since $n < k$ we can pick some color for \dagger that is different from those of its neighbors
Graph Coloring Heuristic

1. The following works well in practice:
 - Pick a node \(t \) with fewer than \(k \) neighbors
 - Put \(t \) on a stack and remove it from the RIG
 - Repeat until the graph has one node

2. Assign colors to nodes on the stack
 - Start with the last node added
 - At each step pick a color different from those assigned to already colored neighbors
Graph Coloring Example (1)

- Start with the RIG and with $k = 4$:

 Stack: {}

- Remove a
Graph Coloring Example (2)

- Remove \(d \)

Stack: \(\{a\} \)
Graph Coloring Example (3)

• Note: all nodes now have fewer than 4 neighbors

Stack: \{d, a\}

• Remove c
Graph Coloring Example (4)

Stack: \{c, d, a\}

- Remove b
Graph Coloring Example (5)

Stack: \{b, c, d, a\}

- Remove \(e\)
Graph Coloring Example (6)

Stack: \{e, b, c, d, a\}

- Remove \(f \)
Graph Coloring Example (7)

- Empty graph - done with the first part!

Stack: \{f, e, b, c, d, a\}

- Now start assigning colors to nodes, starting with the top of the stack
Graph Coloring Example (8)

Stack: \{e, b, c, d, a\}
Graph Coloring Example (9)

- e must be in a different register from f

Stack: \{b, c, d, a\}
Graph Coloring Example (10)

Stack: \{c, d, a\}
Graph Coloring Example (11)

Stack: \{d, a\}
Graph Coloring Example (12)

- \(d \) can be in the same register as \(b \)

Stack: \(\{a\} \)
Graph Coloring Example (13)
What if the Heuristic Fails?

• What happens if the graph coloring heuristic fails to find a coloring?

• In this case, we can’t hold all values in registers.
 - Some values are spilled to memory
What if the Heuristic Fails?

• What if all nodes have k or more neighbors?

• Example: Try to find a 3-coloring of the RIG:

![Graph Diagram]

Prof. Aiken
What if the Heuristic Fails?

- Remove a and get stuck (as shown below)
 - There is no node with fewer than 3 neighbors
- Pick a node as a candidate for spilling
 - A spilled temporary “lives” in memory
 - Assume that f is picked as a candidate
What if the Heuristic Fails?

- Remove \(f \) and continue the simplification
 - Simplification now succeeds: \(b, d, e, c \)
What if the Heuristic Fails?

• Eventually we must assign a color to \(f \)

• We hope that among the 4 neighbors of \(f \) we use less than 3 colors \(\Rightarrow \) optimistic coloring

In this ex., it doesn’t work
Spilling

• If optimistic coloring fails, we spill f

 - Allocate a memory location for f

 • Typically in the current stack frame

 • Call this address fa

• Before each operation that reads f, insert

 $f := \text{load } fa$

• After each operation that writes f, insert

 $\text{store } f, fa$
Spilling Example

- Original code

\[
\begin{align*}
a &:= b + c \\
d &:= -a \\
e &:= d + f \\
f &:= 2 \times e \\
b &:= f + c \\
b &:= d + e \\
e &:= e - 1
\end{align*}
\]
Spilling Example

- This is the new code after spilling f

```
  a := b + c  
  d := -a     
  f := load fa
  e := d + f

  f := 2 * e  
  store f, fa

  b := d + e  
  e := e - 1

  f := load fa
  b := f + c
```
A Problem

• This code reuses the register name f

• Correct, but suboptimal
 – Should use distinct register names whenever possible
 – Allows different uses to have different colors
Spilling Example

• This is the new code after spilling f

\[
\begin{align*}
a &:= b + c \\
d &:= -a \\
f1 &:= \text{load } fa \\
e &:= d + f1 \\
f2 &:= 2 \times e \\
\text{store } f2, fa \\
f3 &:= \text{load } fa \\
b &:= f3 + c \\
b &:= d + e \\
e &:= e - 1
\end{align*}
\]
The new liveness information after spilling:

- \(a := b + c \)
- \(d := -a \)
- \(f1 := \text{load} f_a \)
- \(e := d + f1 \)
- \(f2 := 2 \times e \) (store \(f2, f_a \))
- \(b := d + e \) (store \(f2, f_a \))
- \(e := e - 1 \)
- \(f3 := \text{load} f_a \)
- \(b := f3 + c \)
Recomputing Liveness Information

• New liveness information is almost as before
 - Note f has been split into three temporaries

• fi is live only
 - Between a $fi := load fa$ and the next instruction
 - Between a $store fi, fa$ and the preceding instr.

• Spilling reduces the live range of f
 - And thus reduces its interferences
 - Which results in fewer RIG neighbors
Recompute RIG After Spilling

- Some edges of the spilled node are removed
- In our case f still interferes only with c and d
- And the resulting RIG is 3-colorable
Spilling Notes

• Additional spills might be required before a coloring is found

• The tricky part is deciding what to spill
 – But any choice is correct

• Possible heuristics:
 – Spill temporaries with most conflicts
 – Spill temporaries with few definitions and uses
 – Avoid spilling in inner loops
Conclusions

• Register allocation is a “must have” in compilers:
 - Because intermediate code uses too many temporaries
 - Because it makes a big difference in performance

• Register allocation is more complicated for CISC machines
Caches

• **Compilers are very good at managing registers**
 - Much better than a programmer could be

• **Compilers are not good at managing caches**
 - This problem is still left to programmers
 - It is still an open question how much a compiler can do to improve cache performance

• **Compilers can, and a few do, perform some cache optimizations**
Cache Optimization

- Consider the loop

  ```
  for(j := 1; j < 10; j++)
    for(i=1; i<1000; i++)
      a[i] *= b[i]
  ```

- This program has terrible cache performance

 - Because each iteration of the inner loop refers to a new element of arrays (i.e., fresh data) = [a cache miss]

Prof. Aiken
Cache Optimization (Cont.)

- Consider the program:

```java
for(i=1; i<1000; i++)
    for(j := 1; j < 10; j++)
        a[i] *= b[i]
```

- Computes the same thing
- But with much better cache behavior
- Might actually be more than 10x faster

- A compiler can perform this optimization
 - called loop interchange
Question?

Which of the following pairs of temporaries interfere in the code fragment given at right?

- [] A and B
- [] A and C
- [] B and C
- [] C and D
Question?

Which of the following colorings is a valid minimal coloring of the given RIG?
Question?

For the given RIG and $k = 3$, which of the following are valid deletion orders for the nodes of the RIG?

- $\{d, e, c, b, a, f\}$
- $\{e, f, a, b, c, d\}$
- $\{d, c, b, a, f, e\}$
- $\{d, e, b, c, a, f\}$
For the given code fragment and RIG, find the minimum cost spill. In this example, the cost of spilling a node is given by:

of occurrences (use or definition) - # of conflicts + 5 if the node corresponds to a variable used in a loop