Global Optimizations

Lecture 12
Organization of a Code Optimizer (Revisited)
Local Optimization

Recall the simple basic-block optimizations
 - Constant propagation
 - Dead code elimination

\[
\begin{align*}
X &:= 3 \\
Y &:= Z \times W \\
Q &:= X + Y
\end{align*}
\]

Prof. Aiken
Global Optimization

These optimizations can be extended to an entire control-flow graph.

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[A := 2 \times X \]
\[Y := 0 \]
Global Optimization

These optimizations can be extended to an entire control-flow graph.

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Global Optimization

These optimizations can be extended to an entire control-flow graph

\[
X := 3
\]
\[
B > 0
\]
\[
Y := Z + W
\]
\[
Y := 0
\]
\[
A := 2 \times 3
\]
Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

```plaintext
X := 3
B > 0
Y := Z + W
X := 4
Y := 0
A := 2 * X

We cannot propagate constant 3 or 4 to X
```
Correctness (Cont.)

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is $x := k$ **
Example 1 Revisited

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
Example 2 Revisited

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[X := 4 \]
\[Y := 0 \]
\[A := 2 \times X \]
Discussion

• The correctness condition is not trivial to check

• “All paths” includes paths around loops and through branches of conditionals

• Checking the condition requires global dataflow analysis
 - An analysis of the entire control-flow graph
Global Analysis

Global optimization tasks share several traits:
- The optimization depends on knowing a property X at a particular point in program execution.
- Proving X at any point requires knowledge of the entire program.
- It is OK to be conservative. If the optimization requires X to be true, then want to know either:
 - X is definitely true.
 - Don’t know if X is true (we don’t do the optimization).
- It is always safe to say “don’t know.”
Global Analysis (Cont.)

• *Global dataflow analysis* is a standard technique for solving problems with these characteristics

• *Global constant propagation* is one example of an optimization that requires global dataflow analysis
Global Constant Propagation

- Global constant propagation can be performed at any point where ** holds

On every path to the use of x, the last assignment to x is $x := k$ (**)

- Consider the case of computing ** for a single variable X at all program points
Global Constant Propagation (Cont.)

• To make the problem precise, we associate one of the following values with X at every program point:

<table>
<thead>
<tr>
<th>value</th>
<th>interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>\times</td>
<td>This statement never executes</td>
</tr>
<tr>
<td>c</td>
<td>$X = \text{constant } c$</td>
</tr>
<tr>
<td>\square</td>
<td>X is not a constant</td>
</tr>
</tbody>
</table>
Example

Prof. Aiken
Using the Information

- Given global constant information, it is easy to perform the optimization
 - Simply inspect the $x = ?$ associated with a statement using x
 - If x is constant at that point replace that use of x by the constant

- But how do we compute the properties $x = ?$
The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements.
The idea is to “push” or “transfer” information from one statement to the next. For each statement s, we compute information about the value of x immediately before and after s:

- $C(x, s, \text{in}) = \text{value of } x \text{ before } s \text{ is executed}$
- $C(x, s, \text{out}) = \text{value of } x \text{ after } s \text{ is executed}$

Stands for ‘constant’ information
Transfer Functions

• Define a *transfer* function that transfers information one statement to another

• In the following rules, let statement s have immediate predecessor statements p_1, \ldots, p_n
Rule 1

if $\exists i \ (C(p_i, x, \text{out}) = \square)$
then $C(s, x, \text{in}) = \square$
Rule 2

if \(\exists_{i,j} \ (C(p_i, x, out) = c \land C(p_j, x, out) = d \land d \not= c) \)
then \(C(s, x, in) = \square \)
Rule 3

\[
\begin{align*}
\text{if } & \forall_i (C(p_i, x, \text{out}) = c \text{ or } \otimes) \\
& \text{then } C(s, x, \text{in}) = c
\end{align*}
\]
Rule 4

if \(\forall_i (C(p_i, x, \text{out}) = \otimes) \)
then \(C(s, x, \text{in}) = \otimes \)
The Other Half

• Rules 1-4 relate the *out* of one statement to the *in* of the next statement

• Now we need rules relating the *in* of a statement to the *out* of the same statement
Rule 5

if $C(s, x, \text{in}) = \otimes$ then $C(s, x, \text{out}) = \otimes$

Prof. Aiken [slightly modified]
Rule 6

Rule 6 has a lower priority than Rule 5

R6 is checked only when R5 cannot be applied

if c is a constant
then $C(x := c, x, out) = c$
Rule 7

Rule 7 has a lower priority than Rule 5

R7 is checked only when R5 cannot be applied

\[
x := f(\ldots)
\]

\[f(\ldots) \text{ is anything except a constant}\]

\[
C(x := f(\ldots), x, \text{out}) = \square
\]
Rule 8

if $x \not= y$
then $C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in})$
An Algorithm

1. For every entry s to the program, set $C(s, x, \text{in}) = \square$

2. Set $C(s, x, \text{in}) = C(s, x, \text{out}) = \times$ everywhere else

3. Repeat until all points satisfy 1-8:
 Pick s not satisfying 1-8 and update using the appropriate rule
Constant Propagation

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4 \\
A &:= 2 \times X \\
Y &:= 0 \\
X &:= 0
\end{align*}
\]
Constant Propagation

Rule 6: if c is a constant then $C(x := c, x, \text{out}) = c$
Constant Propagation

Rule 8: if $x \neq y$ then $C(y := \ldots, x, \text{out}) = C(y := \ldots, x, \text{in})$
Constant Propagation

Rule 3: if $\forall_i (C(p_i, x, out) = c \text{ or } \otimes)$ then $C(s, x, in) = c$
Constant Propagation

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
Y &:= Z + W \\
X &:= 4
\end{align*}
\]

Rule 8: if \(x \neq y \) then
\[
C(y := \ldots, x, out) = C(y := \ldots, x, in)
\]
Constant Propagation

Rule 6: if \(c \) is a constant then \(C(x := c, x, \text{out}) = c \)
Constant Propagation

\[
\begin{align*}
X &:= 3 \\
B &> 0 \\
X &:= 3 \\
Y &:= Z + W \\
X &:= 4 \\
X &:= 3 \\
Y &:= 0 \\
A &:= 2 \times X \\
X &:= 4 \\
X &:= 3 \\
X &:= \square \quad \text{by rule 2} \\
X &:= \otimes
\end{align*}
\]

Rule 2: if \(\exists_{i,j} (C(p_i, x, \text{out}) = c \land C(p_j, x, \text{out}) = d \land d \not\leftrightarrow c) \)
then \(C(s, x, \text{in}) = \square \)

Prof. Aiken [slightly modified]
Constant Propagation

Rule 8: if \(x \neq y \) then \(C(y := ..., x, out) = C(y := ..., x, in) \)
The Value ☒

- To understand why we need ☒, look at a loop
Discussion

• Consider the statement $Y := 0$

• To compute whether X is constant at this point, we need to know whether X is constant at the two predecessors
 - $X := 3$
 - $A := 2 * X$

• But info for $A := 2 * X$ depends on its predecessors, including $Y := 0$!
The Value \otimes (Cont.)

• Because of cycles, all points must have values at all times

• Intuitively, assigning some initial value allows the analysis to break cycles

• The initial value \otimes means “So far as we know, control never reaches this point”
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[A := 2 \times X \]
\[A < B \]
Example

\[X := 3 \]
\[B > 0 \]

\[Y := Z + W \]

\[A := 2 \times X \]
\[A < B \]

\[Y := 0 \]
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[A := 2 \times X \]
\[A < B \]
\[Y := 0 \]
Example

\[X := 3 \]
\[B > 0 \]
\[Y := Z + W \]
\[Y := 0 \]
\[A := 2 \times X \]
\[A < B \]
Example

$X := 3$
$B > 0$

$Y := Z + W$

$A := 2 \times X$
$A < B$

$Y := 0$

$X = 3$
Example

\[
X := 3 \\
B > 0
\]

\[
Y := Z + W
\]

\[
A := 2 \times X \\
A < B
\]

\[
Y := 0
\]

\[
X = \square
\]

\[
X = 3
\]
Example

X := 3
B > 0

Y := Z + W

A := 2 * X
A < B

Y := 0

X = 3
Orderings

• We can simplify the presentation of the analysis by ordering the values

 \(\otimes < c < \square \)

 these are abstract values

 e.g., \(\square \) stands for any possible run time value

• Drawing a picture with “lower” values drawn lower, we get

 constants are not comparable

 e.g., 0 is not less than 1

Prof. Aiken [slightly modified]
Orderings (Cont.)

• □ is the greatest value, □ is the least
 - All constants are in between and incomparable

• Let lub be the least-upper bound in this ordering
 - Examples: lub(1, 2) = □, lub(□, □) = □, lub(1, □) = 1, ...

• Rules 1-4 are in fact computing lub:
 \[C(s, x, \text{in}) = \text{lub} \{ C(p, x, \text{out}) \mid p \text{ is a predecessor of } s \} \]
Termination

• Simply saying “repeat until nothing changes” doesn’t guarantee that eventually nothing changes

• The use of lub explains why the algorithm terminates
 - Values start as \otimes and only increase
 \otimes can change to a constant, and a constant to \otimes
 - Thus, $C(s, x, _)$ can change at most twice
Termination (Cont.)

Thus the algorithm is linear in program size

Number of steps =
Number of $C(....)$ value computed * 2 =
Number of program statements * 4

for each statement s, we have
one $c(s, x, \text{in})$ and one $c(s, x, \text{out})$,
each can change at most twice
Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, \(X := 3 \) is dead (assuming \(X \) not used elsewhere)
Live and Dead

- The first value of x is dead (never used)

- The second value of x is live (may be used in the future)

- Liveness is an important concept

Prof. Aiken [slightly modified]
Liveness

A variable x is live at statement s if
- There exists a statement s' that uses x
- There is a path from s to s'
- That path has no intervening assignment to x
Global Dead Code Elimination

• A statement $x := \ldots$ is dead code if x is dead after the assignment

• Dead statements can be deleted from the program

• But we need liveness information first . . .
Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation.

- Liveness is simpler than constant propagation, since it is a boolean property (true or false).
Liveness Rule 1

\[L(p, x, \text{out}) = \lor \{ L(s, x, \text{in}) | s \text{ a successor of } p \} \]
Liveness Rule 2

\[L(s, x, \text{in}) = \text{true} \text{ if } s \text{ refers to } x \text{ on the rhs} \]
Liveness Rule 3

L(x := e, x, in) = \text{false} \text{ if } e \text{ does not refer to } x

because \(x \) is being overwritten here
Liveness Rule 4

\[L(s, x, \text{in}) = L(s, x, \text{out}) \text{ if } s \text{ does not refer to } x \]
Algorithm

1. Let all \(L(...) = false \) initially

2. Repeat until all statements \(s \) satisfy rules 1-4
 Pick \(s \) where one of 1-4 does not hold and update using the appropriate rule
Prof. Aiken

Example

If (x == 10)

x := x + 1

where x is live?
Example

Rule 2: \(L(s, x, \text{in}) = \text{true} \) if \(s \) refers to \(x \) on the rhs
Example

Rule 2: $L(s, x, \text{in}) = \text{true}$ if s refers to x on the rhs

Prof. Aiken
Example

If \(x = 10 \)

\[
x := x + 1
\]

where \(x \) is live?

\[
X := 0 \leftarrow \text{false}
\]

by rule 2

Rule 2: \(L(s, x, \text{in}) = \text{true} \) if \(s \) refers to \(x \) on the rhs
Example

Rule 1: $L(p, x, \text{out}) = \lor \{ L(s, x, \text{in}) \mid s \text{ a successor of } p \}$
Example

Rule 3: \(L(x := e, x, \text{in}) = \text{false} \) if \(e \) does not refer to \(x \)
Termination

• A value can change from *false* to *true*, but not the other way around

• Each value can change only once, so termination is guaranteed

• *Once the analysis is computed, it is simple to eliminate dead code*
Forward vs. Backward Analysis

We've seen two kinds of analysis:

Constant propagation is a \textit{forwards} analysis: information is pushed from inputs to outputs

Liveness is a \textit{backwards} analysis: information is pushed from outputs back towards inputs
Analysis

• There are many other global flow analyses

• Most can be classified as either forward or backward

• Most also follow the methodology of local rules relating information between adjacent program points
Question?

After running the constant propagation algorithm to completion, choose the correct dataflow information for X, Y, and Z at the program point labeled at right.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z := 5
C > 0

Y := 1
X := 4
Z := X + Y

A := X * Y
B := A * Z

Prof. Aiken
Question?

After running the constant propagation algorithm to completion, choose the correct dataflow information for X, Y, and Z at the program point labeled at right.

<table>
<thead>
<tr>
<th></th>
<th>X</th>
<th>Y</th>
<th>Z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Z := X + 6
A > 0
X := 4
Y := 1
B > 0
Y := 1
X := Z + 3
C < 10

Prof. Aiken
Question?

After running the liveness analysis algorithm to completion, which of W, X, Y, and Z are live at the program point labeled at right? Assume all variables are dead on exit.