Lexical Analysis

Lecture 2
Lexical Analysis

• What do we want to do? Example:

  ```
  if (i == j)
      Z = 0;
  else
      Z = 1;
  ```

• The input is just a string of characters:

  ```
  \tif (i == j)\n  \tz = 0;\n  \text{else}\n  \tz = 1;
  ```

• Goal: Partition input string into substrings
 - Where the substrings are tokens
What's a Token?

- A syntactic category
 - In English: noun, verb, adjective, ...
 - In a programming language: Identifier, Integer, Keyword, Whitespace, ...
Tokens

- Tokens correspond to sets of strings.

- Identifier: strings of letters or digits, starting with a letter: A1, Foo, B17

- Integer: a non-empty string of digits: 0, 12, 001

- Keyword: “else” or “if” or “begin” or ...

- Whitespace: a non-empty sequence of blanks, newlines, and tabs
What are Tokens For?

• Classify program substrings according to role

• Output of lexical analysis is a stream of tokens . . .

• . . . which is input to the parser

• Parser relies on token distinctions
 - An identifier is treated differently than a keyword
Lexical Analyzer in Perspective

<table>
<thead>
<tr>
<th>Symbol Table</th>
</tr>
</thead>
<tbody>
<tr>
<td>key</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
</tbody>
</table>

source program → lexical analyzer → symbol table → get next token → parser → output

position = initial + rate * 60

<id, 1> <op, => <id, 2> <op, +> <id, 3> <op, *> <num, 60>
Example

• Recall

\texttt{\textbraceleft\texttt{if} (i == j)\textbraceleft\texttt{then} tz = 0;\textbraceleft\texttt{else} tz = 1;\textbraceright\texttt{KW(I R I) KW I = N; KW K KW I = N;}}

• Useful tokens for this expression:

 Number, Keyword, Relation, Identifier, Whitespace, (,), =, ;

• N.B., (,), =, ; are tokens, not characters, here
Designing a Lexical Analyzer: Step 1

• Define a finite set of tokens

 - Tokens describe all items of interest

 - Choice of tokens depends on language, design of parser
Designing a Lexical Analyzer: Step 2

• Describe which strings belong to each token

• Recall:
 - Identifier: *strings of letters or digits, starting with a letter*
 - Integer: *a non-empty string of digits*
 - Keyword: “else” or “if” or “begin” or …
 - Whitespace: *a non-empty sequence of blanks, newlines, and tabs*
Lexical Analyzer: Implementation

- An implementation must do two things:

 1. Recognize substrings corresponding to tokens
 The lexemes

 2. Return the token class of each lexeme
 <Token class, lexeme>
Lexical Analyzer: Implementation

- The lexer usually discards “uninteresting” tokens that don’t contribute to parsing.

- Examples: Whitespace, Comments
True Crimes of Lexical Analysis

• Is it as easy as it sounds?

• Not quite!

• Look at some history . . .
Lexical Analysis in FORTRAN

• FORTRAN rule: Whitespace is insignificant

• E.g., VAR1 is the same as VA R1

• A terrible design!
Example

• **Consider**
 - DO 5 I = 1.25
 - DO 5 I = 1.25
Lexical Analysis in FORTRAN (Cont.)

• Two important points:

 1. The goal is to partition the string. This is implemented by reading left-to-write, recognizing one token at a time

 2. “Lookahead” may be required to decide where one token ends and the next token begins
Lookahead

• Even our simple example has lookahead issues
 \(i \) vs. \(if \)
 \(= \) vs. \(== \)

• Footnote: FORTRAN Whitespace rule motivated by inaccuracy of punch card operators
Lexical Analysis in PL/I

• PL/I keywords are not reserved
 IF ELSE THEN THEN = ELSE; ELSE ELSE ELSE = THEN

Keyword Keyword Keyword
Lexical Analysis in PL/I (Cont.)

• PL/I Declarations:

 DECLARE (ARG1, . . ., ARGN)

• Can’t tell whether DECLARE is a keyword or array reference until after the).
 - Requires arbitrary/unbounded lookahead!
Lexical Analysis in C++

- Unfortunately, the problems continue today

- C++ template syntax:
 \[\text{Foo<Bar>} \]

- C++ stream syntax:
 \[\text{cin >> var;} \]

- But there is a conflict with nested templates:
 \[\text{Foo<Bar<Bazz>>} \]
Review

• The goal of lexical analysis is to
 - Partition the input string into lexemes
 - Identify the token of each lexeme

• Left-to-right scan => lookahead sometimes required
Next

• We still need
 - A way to describe the lexemes of each token
 - A way to resolve ambiguities
 • Is if two variables i and f?
 • Is == two equal signs = =?
Regular Languages

• There are several formalisms for specifying tokens

• Regular languages are the most popular
 - Simple and useful theory
 - Easy to understand
 - Efficient implementations
Languages

Def. Let Σ be a set of characters. A language over Σ is a set of strings of characters drawn from Σ.
Examples of Languages

- Alphabet = English characters
- Language = English sentences
- Not every string of English characters is an English sentence
- Alphabet = ASCII
- Language = C programs
- Note: ASCII character set is different from English character set
Notation

• Languages are sets of strings.

• Need some notation for specifying which sets we want

• The standard notation for regular languages is regular expressions.
Atomic Regular Expressions

- Single character

 \['c' = \{ "c" \} \]

- Epsilon

 \[\varepsilon = \{ "\"" \} \]
Compound Regular Expressions

- **Union**
 \[A + B = \{ s \mid s \in A \text{ or } s \in B \} \]

- **Concatenation**
 \[AB = \{ ab \mid a \in A \text{ and } b \in B \} \]

- **Iteration**
 \[A^* = \bigcup_{i \geq 0} A^i \quad \text{where} \quad A^i = A \ldots \text{i times} \ldots A \]
Regular Expressions

• **Def.** The *regular expressions over* Σ *are the smallest set of expressions including*

\[\varepsilon \]

'c' where \(c \in \Sigma \)

\(A + B \) where \(A, B \) are rexp over \(\Sigma \)

\(AB \)

\(A^* \) where \(A \) is a rexp over \(\Sigma \)
Syntax vs. Semantics

• To be careful, we should distinguish syntax and semantics.

\[L(\varepsilon) = \{"\"\"\}\]
\[L('c') = \{"'c'"\}\]
\[L(A + B) = L(A) \cup L(B) \]
\[L(AB) = \{ab \mid a \in L(A) \text{ and } b \in L(B)\}\]
\[L(A^*) = \bigcup_{i \geq 0} L(A^i) \]
Syntax vs. Semantics

• Why use a meaning function?

 • Makes it clear what is syntax, what is semantics.

 • Allows us to consider notation as a separate issue.

 • Because expressions and meanings are not 1-1 (ex., Roman vs Arabic numbers)
Algebraic Properties of Regular Expressions

<table>
<thead>
<tr>
<th>AXIOM</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>$r + s = s + r$</td>
<td>+ is commutative</td>
</tr>
<tr>
<td>$r + (s + t) = (r + s) + t$</td>
<td>+ is associative</td>
</tr>
<tr>
<td>$(r \cdot s) \cdot t = r \cdot (s \cdot t)$</td>
<td>concatenation is associative</td>
</tr>
<tr>
<td>$r \cdot (s + t) = r \cdot s + r \cdot t$</td>
<td>concatenation distributes over +</td>
</tr>
<tr>
<td>$(s + t) \cdot r = s \cdot r + t \cdot r$</td>
<td></td>
</tr>
<tr>
<td>$\varepsilon r = r$</td>
<td>ε is the identity element for concatenation</td>
</tr>
<tr>
<td>$r \varepsilon = r$</td>
<td></td>
</tr>
<tr>
<td>$r^* = (r + \varepsilon)^*$</td>
<td>relation between $*$ and ε</td>
</tr>
<tr>
<td>$r^{**} = r^*$</td>
<td>$*$ is idempotent</td>
</tr>
</tbody>
</table>
Example: Keyword

Keyword: “else” or “if” or “begin” or ...

‘else’ + ‘if’ + ‘begin’ + . . .

Note: ‘else’ abbreviates ‘e”l”s”e’
Example: Integers

Integer: a non-empty string of digits

digit = '0'+'1'+'2'+'3'+'4'+'5'+'6'+'7'+'8'+'9'
integer = digit digit*
Example: Identifier

Identifier: strings of letters or digits, starting with a letter

letter = 'A' + . . . + 'Z' + 'a' + . . . + 'z'

identifier = letter (letter + digit)*

letter = [a-zA-Z]

Is (letter* + digit*) the same?
Example: Whitespace

Whitespace: a non-empty sequence of blanks, newlines, and tabs

\((' ' + \n + 't')^+\)
Example: Email Addresses

- Consider \texttt{anyone@cs.stanford.edu}

\[
\sum = \text{letters } \cup \{.,@\} \\
\text{name} = \text{letter}^+ \\
\text{address} = \text{name }'@' \text{name }'.\text{name }'.\text{name}
\]
Example: Unsigned Pascal Numbers

digit = '0' +'1'+ '2'+ '3'+ '4'+ '5'+ '6'+ '7'+ '8'+ '9'
digits = digit*
opt_fraction = ('.' digits) + ε = ('.' digits)?
opt_exponent = ('E' ('+' + '-' + ε) digits) + ε
num = digits opt_fraction opt_exponent
Summary

• Regular expressions describe many useful languages

• Regular languages are a language specification
 - We still need an implementation

• Next: Given a string \(s \) and a rexp \(R \), is
 \[s \in L(R) \]?
Question?

For the code fragment below, choose the correct number of tokens in each class that appear in the code fragment:

```c
x=0; \n\t\nwhile (x > 10){\n\n\tx++;\n}
```

- W: Whitespace
- K: Keyword
- I: Identifier
- N: Number
- O: Other Tokens: `{ ` `} ` `(` `)` `< ` `++ ` `; ` `=`

- W = 9; K = 1; I = 3; N = 2; O = 9
- W = 11; K = 4; I = 0; N = 2; O = 9
- W = 9; K = 4; I = 0; N = 3; O = 9
- W = 11; K = 1; I = 3; N = 3; O = 9
How many distinct strings are in the language of the following regular expression:

\[(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)(0 + 1 + \varepsilon)\]

- 31
- 64
- 32
- 81
The language of the regular expression \((abab)^*\) is equivalent to the language of which of the following regular expressions?

Choose all that apply

- \((ab)^*\)
- \((aba (baba)^* b) + \varepsilon\)
- \((ab (abab)^* ab) + \varepsilon\)
- \((a (ba)^* b) + \varepsilon\)