Problems with Top Down Parsing

- Left Recursion in CFG May Cause Parser to Loop Forever.
 - Indeed:
 - In the production $A \rightarrow A\alpha$ we write the program
      ```
      procedure A
      {
        if lookahead belongs to First($A\alpha$) then
          call the procedure A
      }
      ```

- Solution: Remove Left Recursion...
 - without changing the Language defined by the Grammar.
Dealing with Left recursion

Solution: Algorithm to Remove Left Recursion:

BASIC IDEA:
A → Aα | β becomes
A → βR
R → αR | ε

```plaintext
expr → expr + term | expr - term | term
term → id

expr → term rest
rest → + term rest | - term rest | ε
term → id
```
A left recursive grammar has rules that support the derivation: $A \Rightarrow A\alpha$, for some α.

Top-Down parsing can’t reconcile this type of grammar, since it could consistently make choice which wouldn’t allow termination.

$A \Rightarrow A\alpha \Rightarrow A\alpha\alpha \Rightarrow A\alpha\alpha\alpha \ldots \text{etc.}$

$A \rightarrow A\alpha | \beta$

Take left recursive grammar:

$A \rightarrow A\alpha | \beta$

To the following:

$A \rightarrow \beta A'$

$A' \rightarrow \alpha A' | \epsilon$
Resolving Difficulties : Left Recursion (2)

Informal Discussion:

Take all productions for A and order as:

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

Where no β_i begins with A.

Now apply concepts of previous slide:

$$A \rightarrow \beta_1 A' \mid \beta_2 A' \mid \ldots \mid \beta_n A'$$

$$A' \rightarrow \alpha_1 A' \mid \alpha_2 A' \mid \ldots \mid \alpha_m A' \mid \in$$

For our example:

$$E \rightarrow E + T \mid T$$

$$T \rightarrow T * F \mid F$$

$$F \rightarrow (E) \mid id$$

$$E \rightarrow TE'$$

$$E' \rightarrow + TE' \mid \in$$

$$T \rightarrow FT'$$

$$T' \rightarrow * FT' \mid \in$$

$$F \rightarrow (E) \mid id$$
Resolving Difficulties: Left Recursion (3)

Problem: If left recursion is two-or-more levels deep, this isn’t enough

\[
S \rightarrow Aa \mid b \quad \{ \quad S \rightarrow Aa \Rightarrow Sda \\
A \rightarrow Ac \mid Sd \mid \epsilon \quad \}
\]

Algorithm:

Input: Grammar G with ordered Non-Terminals A₁, ..., Aₙ

Output: An equivalent grammar with no left recursion

1. Arrange the non-terminals in some order A₁=start NT,A₂,...,Aₙ
2. for i := 1 to n do begin
 for j := 1 to i - 1 do begin
 for k := 1 to i - 1 do begin
 replace each production of the form \(A_i \rightarrow A_j \gamma \)
 by the productions \(A_i \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma \)
 where \(A_j \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k \) are all current \(A_j \) productions;
 end
 end
 eliminate the immediate left recursion among \(A_i \) productions
end
Using the Algorithm

Apply the algorithm to:

\[A_1 \rightarrow A_2 a \mid b \mid \in \]
\[A_2 \rightarrow A_2 c \mid A_1 d \]

i = 1

For \(A_1 \) there is no left recursion

i = 2

for j=1 to 1 do

Take productions: \(A_2 \rightarrow A_1 \gamma \) and replace with

\[A_2 \rightarrow \delta_1 \gamma \mid \delta_2 \gamma \mid \ldots \mid \delta_k \gamma \]

where \(A_1 \rightarrow \delta_1 \mid \delta_2 \mid \ldots \mid \delta_k \) are \(A_1 \) productions

in our case \(A_2 \rightarrow A_1 d \) becomes \(A_2 \rightarrow A_2 ad \mid bd \mid d \)

What’s left: \(A_1 \rightarrow A_2 a \mid b \mid \in \)

\[A_2 \rightarrow A_2 c \mid A_2 ad \mid bd \mid d \]

Are we done?
Using the Algorithm (2)

No! We must still remove A_2 left recursion!

$$A_1 \rightarrow A_2a \mid b \mid \varepsilon$$

$$A_2 \rightarrow A_2c \mid A_2ad \mid bd \mid d$$

Recall:

$$A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_m \mid \beta_1 \mid \beta_2 \mid \ldots \mid \beta_n$$

$$A \rightarrow \beta_1A' \mid \beta_2A' \mid \ldots \mid \beta_nA'$$

$$A' \rightarrow \alpha_1A' \mid \alpha_2A' \mid \ldots \mid \alpha_mA' \mid \varepsilon$$

Apply to above case. What do you get?
Removing Difficulties : Left Factoring

Problem : Uncertain which of 2 rules to choose:

\[stmt \rightarrow \text{if} \ expr \ \text{then} \ stmt \ \text{else} \ stmt \]

\[/\text{if} \ expr \ \text{then} \ stmt \]

When do you know which one is valid ?

What’s the general form of \(stmt \)?

\[A \rightarrow \alpha \beta_1 \mid \alpha \beta_2 \]

\[\alpha : \text{if} \ expr \ \text{then} \ stmt \]

\[\beta_1 : \text{else} \ stmt \]

\[\beta_2 : \in \]

Transform to:

\[A \rightarrow \alpha \ A' \]

\[A' \rightarrow \beta_1 \mid \beta_2 \]

EXAMPLE:

\[stmt \rightarrow \text{if} \ expr \ \text{then} \ stmt \ rest \]

\[rest \rightarrow \text{else} \ stmt \ / \in \]
Motivating Table-Driven Parsing

1. Left to right scan input

2. Find leftmost derivation

Grammar:

\[E \rightarrow TE' \]
\[E' \rightarrow +TE' | \epsilon \]
\[T \rightarrow id \]

Input: \(id + id \) $

Terminator

Derivation:

\[E \Rightarrow \]

Processing Stack:
LL(1) Grammars

L : Scan input from Left to Right
L : Construct a Leftmost Derivation
1 : Use “1” input symbol as lookahead in conjunction with stack to decide on the parsing action

LL(1) grammars == they have no multiply-defined entries in the parsing table.

Properties of LL(1) grammars:

- Grammar can’t be ambiguous or left recursive
- Grammar is LL(1) ⇔ when $A \rightarrow \alpha | \beta$
 1. $\text{First}(\alpha) \cap \text{First}(\beta) = \emptyset$; besides, only one of α or β can derive ϵ
 2. if α derives ϵ, then $\text{Follow}(A) \cap \text{First}(\beta) = \emptyset$

Note: It may not be possible for a grammar to be manipulated into an LL(1) grammar
Non-Recursive / Table Driven

General parser behavior: X : top of stack a : current input

1. When $X=a =$ $\$ $ halt, accept, success

2. When $X=a \neq \$ $, POP X off stack, advance input, go to 1.

3. When X is a non-terminal, examine $M[X,a]$
 if it is an error \rightarrow call recovery routine
 if $M[X,a] = \{X \rightarrow UVW\}$, POP X, PUSH W,V,U
 DO NOT expend any input
Algorithm for Non-Recursive Parsing

Set ip to point to the first symbol of w$;$

repeat

let X be the top stack symbol and a the symbol pointed to by ip;

if X is terminal or $\$$ then

if $X=a$ then

pop X from the stack and advance ip

else error()

else /* X is a non-terminal */

if $M[X,a] = X \rightarrow Y_1 Y_2 \ldots Y_k$ then begin

pop X from stack;

push Y_k, Y_{k-1}, \ldots , Y_1 onto stack, with Y_1 on top

output the production $X \rightarrow Y_1 Y_2 \ldots Y_k$

end

else error()

until $X=\$$ /* stack is empty */

Input pointer

May also execute other code based on the production used
Example

E → TE'
E' → + TE' | ∈
T → FT'
T' → * FT' | ∈
F → (E) | id

Our well-worn example!

Table M

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>INPUT SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td>E</td>
<td>E→TE’</td>
</tr>
<tr>
<td>E’</td>
<td>E’→+TE’</td>
</tr>
<tr>
<td>T</td>
<td>T→FT’</td>
</tr>
<tr>
<td>T’</td>
<td>T’→ε</td>
</tr>
<tr>
<td>F</td>
<td>F→id</td>
</tr>
</tbody>
</table>
Trace of Example

<table>
<thead>
<tr>
<th>STACK</th>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Trace of Example

<table>
<thead>
<tr>
<th>STACK</th>
<th>INPUT</th>
<th>OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>id + id * id$</td>
<td></td>
</tr>
<tr>
<td>$E'T$</td>
<td>id + id * id$</td>
<td>E→TE’</td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id + id * id$</td>
<td>T→FT’</td>
</tr>
<tr>
<td>$E’T’id$</td>
<td>id + id * id$</td>
<td>F→id</td>
</tr>
<tr>
<td>$E’T’$</td>
<td>+ id * id$</td>
<td></td>
</tr>
<tr>
<td>$E’$</td>
<td>+ id * id$</td>
<td>T’→ε</td>
</tr>
<tr>
<td>$E’T+$</td>
<td>+ id * id$</td>
<td>E’→+TE’</td>
</tr>
<tr>
<td>$E’T$</td>
<td>id * id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id * id$</td>
<td>T→FT’</td>
</tr>
<tr>
<td>$E’T’F*$</td>
<td>* id$</td>
<td>T’→*FT’</td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’id$</td>
<td>id$</td>
<td>F→id</td>
</tr>
<tr>
<td>$E’T’$</td>
<td>* id$</td>
<td></td>
</tr>
<tr>
<td>$E’T$</td>
<td>id * id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F*$</td>
<td>* id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’id$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T$</td>
<td>$</td>
<td>T’→ε</td>
</tr>
<tr>
<td>$E’$</td>
<td>$</td>
<td>E’→ε</td>
</tr>
</tbody>
</table>

Expend Input
The leftmost derivation for the example is as follows:

\[E \Rightarrow TE' \Rightarrow FT'E' \Rightarrow id \ T'E' \Rightarrow id \ E' \Rightarrow id + TE' \Rightarrow id + FT'E' \]
\[\Rightarrow id + id \ T'E' \Rightarrow id + id \times FT'E' \Rightarrow id + id \times id \ T'E' \]
\[\Rightarrow id + id \times id \ E' \Rightarrow id + id \times id \]
What’s the Missing Puzzle Piece?

Constructing the Parsing Table M!

1st: Calculate First & Follow for Grammar

2nd: Apply Construction Algorithm for Parsing Table
 (We’ll see this shortly)

Basic Tools:

First: Let α be a string of grammar symbols. First(α) is the set that includes every terminal that appears leftmost in α or in any string originating from α.
 NOTE: If $\alpha \Rightarrow \epsilon$, then ϵ is First(α).

Follow: Let A be a non-terminal. Follow(A) is the set of terminals a that can appear directly to the right of A in some sentential form. ($S \Rightarrow \alpha Aa\beta$, for some α and β).
 NOTE: If $S \Rightarrow \alpha A$, then $\$ is Follow(A).
Constructing Parsing Table

Algorithm:

Table has one row per non-terminal / one column per terminal (incl. $\$\$)

1. Repeat Steps 2 & 3 for each rule $A \rightarrow \alpha$

2. Terminal a in First(α)? Add $A \rightarrow \alpha$ to $M[A, a]$

3. ε in First(α)? Add $A \rightarrow \alpha$ to $M[A, b]$ for all terminals b in Follow(A).

4. All undefined entries are errors.
Constructing Parsing Table – Example 1

<table>
<thead>
<tr>
<th>Grammar Production</th>
<th>First(S)</th>
<th>Follow(S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S → i E t SS’</td>
<td>{ i, a }</td>
<td>{ e, $ }</td>
</tr>
<tr>
<td>S’ → eS</td>
<td>{ e, $ }</td>
<td>{ e, $ }</td>
</tr>
<tr>
<td>E → b</td>
<td>{ b }</td>
<td>{ t }</td>
</tr>
</tbody>
</table>
Constructing Parsing Table – Example 1

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>INPUT SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>a</td>
</tr>
<tr>
<td>S</td>
<td>S → a</td>
</tr>
<tr>
<td>S’</td>
<td>S → iEtSS’</td>
</tr>
<tr>
<td>E</td>
<td></td>
</tr>
<tr>
<td>S</td>
<td></td>
</tr>
<tr>
<td>S’</td>
<td>S’ → e</td>
</tr>
<tr>
<td>S’</td>
<td>S’ → eS</td>
</tr>
<tr>
<td>E</td>
<td>E → b</td>
</tr>
</tbody>
</table>

First(S) = \{ i, a \}
First(S’) = \{ e, \epsilon \}
First(E) = \{ b \}
Follow(S) = \{ e, \$ \}
Follow(S’) = \{ e, \$ \}
Follow(E) = \{ t \}
Constructing Parsing Table – Example 2

<table>
<thead>
<tr>
<th>Grammar Rule</th>
<th>First(E,F,T)</th>
<th>Follow(E,E’)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E → TE’</td>
<td>{ (, id }</td>
<td></td>
</tr>
<tr>
<td>E’ → + TE’</td>
<td>+, ∈</td>
<td></td>
</tr>
<tr>
<td>T → FT’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T’ → * FT’</td>
<td>*, ∈</td>
<td></td>
</tr>
<tr>
<td>F → (E)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>id</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Follow(F) = { *, +,), $ }
Follow(T,T’) = { +,), $}
Constructing Parsing Table – Example 2

<table>
<thead>
<tr>
<th>Production</th>
<th>First</th>
<th>Follow</th>
</tr>
</thead>
<tbody>
<tr>
<td>(E \rightarrow TE')</td>
<td>{ (, id }</td>
<td>{ (,) }</td>
</tr>
<tr>
<td>(E' \rightarrow + TE' \mid \in)</td>
<td>{ +, \in }</td>
<td>{ * , + , (, $ }</td>
</tr>
<tr>
<td>(T \rightarrow FT')</td>
<td>{ * , \in }</td>
<td>{ * , + , (, $ }</td>
</tr>
<tr>
<td>(T' \rightarrow * FT' \mid \in)</td>
<td>{ * , \in }</td>
<td>{ + ,) , $ }</td>
</tr>
<tr>
<td>(F \rightarrow (E) \mid \text{id})</td>
<td>{ (, id }</td>
<td>{ (,) }</td>
</tr>
</tbody>
</table>

Expression Example: \(E \rightarrow TE' \): First(TE’) = First(T) = \{ (, id \}

\[
\text{by rule 2}
\]

\[
M[E, (] : E \rightarrow TE' \\
M[E, \text{id}] : E \rightarrow TE'
\]

(by rule 2) \(E' \rightarrow +TE' \): First(+TE’) = + : M[E’, +] : E’ \rightarrow +TE’

(by rule 3) \(E' \rightarrow \in : \in \) in First(\(\in\))

\[
M[E’,)] : E’ \rightarrow \in (3) \\
M[E’, $] : E’ \rightarrow \in (3)
\]

(by rule 3) \(T’ \rightarrow \in : \in \) in First(\(\in\))

\[
M[T’, +] : T’ \rightarrow \in (3) \\
M[T’,] : T’ \rightarrow \in (3)
\]

(Due to Follow(E’))

\[
M[T’, $] : T’ \rightarrow \in (3)
\]
Resolving Problems: Ambiguous Grammars

Consider the following grammar segment:

\[stmt \rightarrow \text{if } expr \text{ then } stmt \]

\[\mid \text{if } expr \text{ then } stmt \text{ else } stmt \]

\[\mid \text{other } (\text{any other statement}) \]

What’s problem here?

Let’s consider a simple parse tree:

Else must match to previous then.
Parse Trees for Example

Form 1:

```
stmt
  /  \  
expr  then
  /    
E_1   stmt
      /  |
     then else
      /    |
E_2   stmt
      /  |
     then S_1
      /    |
S_2   stmt
```

Form 2:

```
stmt
  /  |
expr  then
  /    |
E_1   stmt
      /  |
     then else
      /    |
E_2   stmt
      /  |
     then S_1
      /    |
S_2   stmt
```

What’s the issue here?
Removing Ambiguity

Take Original Grammar:

\[
stmt \rightarrow \text{if expr then stmt} \\
| \text{if expr then stmt else stmt} \\
| \text{other (any other statement)}
\]

Or to write more simply:

\[
S \rightarrow i E t S \\
| i E t S e S \\
| S \\
E \rightarrow a
\]

The problem string: \text{i a t i a t s e s}
Revise to remove ambiguity:

\[S \rightarrow i\ E\ t\ S \]
\[\quad \mid i\ E\ t\ S\ e\ S \]
\[\quad \mid s \]
\[E \rightarrow a \]

\[S \rightarrow M \mid U \]
\[M \rightarrow i\ E\ t\ M\ e\ M \mid s \]
\[U \rightarrow i\ E\ t\ S \mid i\ E\ t\ M\ e\ U \]
\[E \rightarrow a \]

Try the above on \texttt{i a t i a t s e s}

\[\text{stmt} \rightarrow \text{matched_stmt} | \text{unmatched_stmt} \]

\[\text{matched_stmt} \rightarrow \text{if}\ \text{expr}\ \text{then}\ \text{matched_stmt}\ \text{else}\ \text{matched_stmt} / \text{other} \]

\[\text{unmatched_stmt} \rightarrow \text{if}\ \text{expr}\ \text{then}\ \text{stmt} \]
\[\quad \mid \text{if}\ \text{expr}\ \text{then}\ \text{matched}\ \text{stmt}\ \text{else}\ \text{unmatched}\ \text{stmt} \]
Syntax Error Identification / Handling

Recall typical error types:

Lexical : Misspellings
Syntactic : Omission, wrong order of tokens
Semantic : Incompatible types
Logical : Infinite loop / recursive call

Majority of error processing occurs during syntax analysis

NOTE: Not all errors are identifiable !! Which ones?
Error Processing

- Detecting errors
- Finding position at which they occur
- Clear / accurate presentation
- Recover (pass over) to continue and find later errors
- Don’t impact compilation of “correct” programs
Error Recovery Strategies

Panic Mode– Discard tokens until a “synchronizing” token is found (end, “;”, “}”, etc.)
-- Decision of designer

-- Problems:
skip input ⇒ miss declaration – causing more errors
⇒ miss errors in skipped material

-- Advantages:
simple ⇒ suited to 1 error per statement

Phrase Level – Local correction on input
-- “,” ⇒ “;” – Delete “,” – insert “;”
-- Also decision of designer
-- Not suited to all situations
-- Used in conjunction with panic mode to allow less input to be skipped
Error Recovery Strategies – (2)

Error Productions:

-- Augment grammar with rules
-- Augment grammar used for parser construction / generation
-- example: add a rule for
 := in C assignment statements
 Report error but continue compile
-- Self correction + diagnostic messages

Global Correction:

-- Adding / deleting / replacing symbols is chancy – may do many changes!
-- Algorithms available to minimize changes costly - key issues
When Do Errors Occur? Recall Predictive Parser Function:

1. If X is a terminal and it doesn’t match input.
2. If M[X, Input] is empty – No allowable actions

Consider two recovery techniques:

A. Panic Mode
B. Phrase-level Recovery
Panic-Mode Recovery

- Assume a non-terminal on the top of the stack.
- Idea: skip symbols on the input until a token in a selected set of *synchronizing* tokens is found.
- The choice for a synchronizing set is important.
 - some ideas:
 - define the synchronizing set of A to be FOLLOW(A). then skip input until a token in FOLLOW(A) appears and then pop A from the stack. Resume parsing...
 - add symbols of FIRST(A) into synchronizing set. In this case we skip input and once we find a token in FIRST(A) we resume parsing from A.
 - Productions that lead to ϵ if available might be used.
- If a terminal appears on top of the stack and does not match to the input $==$ pop it and and continue parsing (issuing an error message saying that the terminal was inserted).
Panic Mode Recovery, II

General Approach: Modify the empty cells of the Parsing Table.

1. if M[A,a] = {empty} and a belongs to Follow(A) then we set
 M[A,a] = “synch”

Error-recovery Strategy:

If A=top-of-the-stack and a=current-input,

1. If A is NT and M[A,a] = {empty} then skip a from the input.
2. If A is NT and M[A,a] = {synch} then pop A.
3. If A is a terminal and A!=a then pop token (essentially inserting it).
Revised Parsing Table / Example

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>INPUT SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td>E</td>
<td>E→TE'</td>
</tr>
<tr>
<td>E'</td>
<td>___</td>
</tr>
<tr>
<td>T</td>
<td>T→FT'</td>
</tr>
<tr>
<td>T'</td>
<td>___</td>
</tr>
<tr>
<td>F</td>
<td>F→id</td>
</tr>
</tbody>
</table>

From Follow sets. Pop top of stack NT

“synch” action

Skip input symbol
Revised Parsing Table / Example(2)

<table>
<thead>
<tr>
<th>STACK</th>
<th>INPUT</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>+ id * + id$</td>
<td>error, skip +</td>
</tr>
<tr>
<td>E</td>
<td>id * + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T$</td>
<td>id * + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id * + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’id$</td>
<td>id * + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’$</td>
<td>* + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F*$</td>
<td>* + id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>+ id$</td>
<td>error, M[F,+] = synch F has been popped</td>
</tr>
<tr>
<td>$E’T$</td>
<td>+ id$</td>
<td></td>
</tr>
<tr>
<td>$E’$</td>
<td>+ id$</td>
<td></td>
</tr>
<tr>
<td>$E’T+$</td>
<td>+ id$</td>
<td></td>
</tr>
<tr>
<td>$E’T$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’F$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’id$</td>
<td>id$</td>
<td></td>
</tr>
<tr>
<td>$E’T’$</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$E’$</td>
<td>$</td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td></td>
</tr>
</tbody>
</table>

Possible Error Msg: “Misplaced + I am skipping it”
Possible Error Msg: “Missing Term”
Writing Error Messages

- Keep input counter(s)
- Recall: every non-terminal symbolizes an abstract language construct.
- Examples of Error-messages for our usual grammar
 - \(E = \) means expression.
 - Top-of-stack is \(E \), input is +
 - “Error at location i, expressions cannot start with a ‘+’” or
 - “error at location i, invalid expression”
 - Similarly for \(E \), *
 - \(E’ = \) expression ending.
 - Top-of-stack is \(E’ \), input is * or id
 - “Error: expression starting at j is badly formed at location i”
 - Requires: every time you pop an ‘E’ remember the location
Messages for Synch Errors.

- Top-of-stack is F input is +
 - “error at location i, expected summation/multiplication term missing”

- Top-of-stack is E input is)
 - “error at location i, expected expression missing”
When the top-of-the stack is a terminal that does not match...

- E.g. top-of-stack is id and the input is +
 - “error at location i: identifier expected”
- Top-of-stack is) and the input is terminal other than)
 - Every time you match an ‘(‘ push the location of ‘(‘ to a “left parenthesis” stack.
 - this can also be done with the symbol stack.
 - When the mismatch is discovered look at the left parenthesis stack to recover the location of the parenthesis.
 - “error at location i: left parenthesis at location m has no closing right parenthesis”
 - E.g. consider (id * + (id id) $
Incorporating Error-Messages to the Table

- Empty parsing table entries can now fill with the appropriate error-reporting techniques.
Phrase-Level Recovery

• Fill in blanks entries of parsing table with error handling routines that do not only report errors but may also:
 • change/insert/delete/symbols into the stack and/or input stream
 • + issue error message

• Problems:
 • Modifying stack has to be done with care, so as to not create possibility of derivations that aren’t in language
 • infinite loops must be avoided

• Essentially extends panic mode to have more complete error handling
How Would You Implement TD Parser

- Stack – Easy to handle. Write ADT to manipulate its contents
- Input Stream – Responsibility of lexical analyzer
- Key Issue – How is parsing table implemented?

One approach: Assign unique IDS

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>INPUT SYMBOL</th>
<th>id</th>
<th>+</th>
<th>*</th>
<th>(</th>
<th>)</th>
<th>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>E→TE’</td>
<td></td>
<td></td>
<td></td>
<td>E→TE’</td>
<td>synch</td>
<td>synch</td>
</tr>
<tr>
<td>E’</td>
<td>E’→+TE’</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>E’→ε</td>
<td>E’→ε</td>
</tr>
<tr>
<td>T</td>
<td>T→FT’</td>
<td>synch</td>
<td></td>
<td></td>
<td>T→FT’</td>
<td>synch</td>
<td>synch</td>
</tr>
<tr>
<td>T’</td>
<td>T’→ε</td>
<td>synch</td>
<td>T’→*FT’</td>
<td></td>
<td>T’→ε</td>
<td>T’→ε</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>F→id</td>
<td>synch</td>
<td>synch</td>
<td>F→(E)</td>
<td>synch</td>
<td>synch</td>
<td></td>
</tr>
</tbody>
</table>

All rules have unique IDs

Ditto for synch actions

Also for blanks which handle errors
Revised Parsing Table:

<table>
<thead>
<tr>
<th>Non-terminal</th>
<th>INPUT SYMBOL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
<tr>
<td>E’</td>
<td>20</td>
</tr>
<tr>
<td>T</td>
<td>4</td>
</tr>
<tr>
<td>T’</td>
<td>24</td>
</tr>
<tr>
<td>F</td>
<td>8</td>
</tr>
</tbody>
</table>

1 E→TE’
2 E’→+TE’
3 E’→ε
4 T→FT’
5 T’→*FT’
6 T’→ε
7 F→(E)
8 F→id

9 – 17 : Sync Actions
18 – 25 : Error Handlers
Resolving Grammar Problems

Note: Not all aspects of a programming language can be represented by context free grammars / languages.

Examples:

1. Declaring ID before its use
2. Valid typing within expressions
3. Parameters in definition vs. in call

These features are called context-sensitive and define yet another language class, CSL.
Context-Sensitive Languages - Examples

Examples:

$L_1 = \{ \text{wcw} \mid \text{w is in } (a \mid b)^* \} : \text{Declare before use}$

$L_2 = \{ a^n b^m c^n d^m \mid n \geq 1, \ m \geq 1 \}$

$a^n b^m : \text{formal parameter}$

$c^n d^m : \text{actual parameter}$
How do you show a Language is a CFL?

\[L_3 = \{ \ w \ c \ w^R \ | \ w \text{ is in } (a \mid b)^* \} \]

\[L_4 = \{ \ a^n b^m c^m d^n \ | \ n \geq 1, \ m \geq 1 \} \]

\[L_5 = \{ \ a^n b^n c^m d^m \ | \ n \geq 1, \ m \geq 1 \} \]

\[L_6 = \{ \ a^n b^n \ | \ n \geq 1 \} \]
Solutions

$L_3 = \{ \text{w c w}^R | \text{w is in } (a \mid b)^* \}$

\[
S \rightarrow aS\ a \mid bS\ b \mid c
\]

$L_4 = \{ a^n b^m c^m d^n | n \geq 1, \ m \geq 1 \}$

\[
S \rightarrow aS\ d \mid a\ A\ d \\
A \rightarrow b\ A\ c \mid bc
\]

$L_5 = \{ a^n b^n c^m d^m | n \geq 1, \ m \geq 1 \}$

\[
S \rightarrow XY \\
X \rightarrow a\ X\ b \mid ab \\
Y \rightarrow c\ Y\ d \mid cd
\]

$L_6 = \{ a^n b^n | n \geq 1 \}$

\[
S \rightarrow a\ S\ b \mid ab
\]