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Motivation and abstract

In this short report, we are going to study the convergence characters in the Relativistic

Hydrodynamics (RH). We have seen before in my earlier talks that RH possesses a diver-

gent series as solutions for its equation. It seems that gradient expansion never works for

the initial time after the collision and it takes while to restore the hydrodynamic behavior

for corresponding quantities. We talk of asymptotic series rather than convergent series

for RH solutions and RH arises when the non-hydro modes start to cease. This where is

the birth of RH which we call it as the hydrodynamization time. It is about τhyd ∼ 3
T

and

after it we are allowed to use at least second-order or causal hydro. This perception is

acceptable and it originates from seeing the collective behavior for small collision systems.

However, recently some people [1, 3] are talking about the possibility of having convergent

series for RH equations. Their study either hydrodynamically or using the fluid/gravity

correspondence shows that under some circumstances we are able to have a convergent

series solution and dispersion relations might have finite radius of convergence. They

argued that there exists a maximum bound for spatial momentum which beyond that

the RH gradient expansion never works, while below that critical value RH might have a

convergent series solution. This critical momentum is a model-dependent parameter but

it sounds that its existence is universal. Historically, having this critical value backs to

the seminal paper of Romatschke[4], which he derived the modes of retarded correlators

in a weak coupling theory, i.e. kinetic theory with RTA and there he discussed the pos-

sibility of having hydro behavior for weakly interacting particles by going to the details

of playing hydro and non-hydro modes. He showed that passing a critical value of spatial

momentum, the non-hydro modes overwhelm the hydro modes and we don’t have hydro

modes, but below it, the hydro modes arise in the principal Riemann sheet and they are

detectable. In this talk, I try to give you the baseline of this new stream in RH without

going further into details and only make you familiar with this new trend.
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1 Divergence of Gradient Expansion in hydro

RH as an effective field theory based upon two concepts: i) having stable and local

equilibrium, ii) gradient expansion. The first one leads to the definitions of some local

DoF and the second assumption is because of the effective nature of RH. We denote the

macroscopic DoF collectively as φ, such as temperature, chemical potential and fluid’s

velocity. These are necessary to express the conserved currents perturbatively

G = O(φ) +O(∇φ) +O(∇2φ) + . . . . (1)

Here, G stands for the general form of a conserved currents or tensors. Dynamics is given

by the conservation equations

∇G = 0. (2)

Putting the constitutive relations (1) into the equation (2), we get the RH equations. The

O(φ) gives rise to the ideal fluid and Euler equation and higher order contributions such

as O(∇nφ) with n ≥ 1 leads to the Navier-Stokes equations and so on.

To review the divergence features in RH, we back to our previous talking. For an ex-

panding plasma in the 1+1 dimensions with Bjorken symmetry and in the Muller -Israel-

Stewart(MIS) framework, we have seen that EOM are

τ
∂ε

∂τ
= −4

3
ε+ φ,

τπ
∂φ

∂τ
=

4η

3τ
− 4τπ

3τ
φ− φ, (3)

which ε represents the energy and φ stands for the shear stress field. τπ is the Relaxation

time and η is the shear viscosity transport. After some algebraic manipulation, we simplify

the equation (3) into the one non-linear differential equation

Cτπwf(w)f ′(w) + 4Cτπf(w)2 +

(
w − 16

3
Cτπ

)
f(w)− 4Cη

9
+

16Cτπ
9
− 2w

3
= 0,

w = τT, f(w) = τ
ẇ

w
. (4)
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More detailed calculations are given in the paper [5]. Seeking a series solution gives us

f(w) =
∞∑
n=0

an
wn+1

, a0 =
2

3
, a1 =

4Cη
9
,

an+1 = Cτπ

(
16

3
an − (4− n

2
)

n∑
k=0

akan−k

)
, (5)

which an ∼ Cn
τπn!. Therefore, a series solution is not a convergent one, but it is Borel

resummable. In the Borel plane ξ, the Borel transformed function is

B(f)(ξ) =
∞∑
n=0

an
n!
ξn. (6)

It has poles which make ambiguous the resummation process when passing through the

poles either going upward or downward of them. In the Fig 1, a schematic version of

resummation of the original function in the Borel plane is shown. The ambiguity of

Figure 1: Resumming the original function in the case of having some poles or branch
cut. Going up or down of the real axis is not identical and they differ by imaginary
contributions, reminiscent of those poles. In the RH language these poles are non-hydro
modes.

resummation is purely imaginary and comes from the many poles sitting on the real axis

and can be evaluated by Cauchy theorem

Im(Sf(−w)) ∼ ±πe−
w
Cτπ . (7)

For the hydro equation (5) the poles are located on the real axis in the form of 3k
2Cτπ

with

k = 1, 2, . . .. It is suggested that solution to the equation (4) is a trans-series solution

incorporated both the perturbative and non-perturbative ones

f(w) =
∞∑
n=0

(
σe
− 3w

2Cτπ w
− Cη
Cτπ

)n
φn(w) = φ0(w)︸ ︷︷ ︸

perturbative

+
∞∑
n=1

(
σe
− 3w

2Cτπ w
− Cη
Cτπ

)n
φn(w)︸ ︷︷ ︸

non-perturbative

. (8)
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σ is the trans-series parameter and resembles the role of initial conditions and somehow it

is fixed by the reality condition. Relation between the non-perturbative and perturbative

sections make the above series to be a trans-series one.

The φ0(w) encodes the derivative expansion information and higher φn(w) are because of

the presence of non-hydro modes (poles in the Borel plane) which spoils the convergence

of gradient expansion. In this language, hydrodynamic is valid when the non-hydro mode

sector is off or died which translate to a late time such as τ > τc ∼ 1
T

. After this time it is

supposed that RH have finite radius of convergence and importance of non-hydro modes

vanishes. In what follows, we go to give a different scenario and claim that:

There is a maximum spatial momentum limit which we cal it as qc, in such

a way that for k < qc the RH might have convergent series solution or finite

radius of convergence, while for k > qc the above mentioned scenario of trans-

series and late time appearance of hydro occurs.

2 Convergence in the RH

Before going into the details of the paper [3], it is useful to briefly address the main points

of the paper [2], since the Heller work mainly follows the Grozdanov’s job to approve the

existence of convergence in RH. Difference between these two works is that in the paper

[2] or in the parent one [1], the authors try to do the works from gauge/gravity duality

and motivate people to look for the convergence in the original RH without being in the

strong coupling regime.

In the gauge/gravity duality the boundary hydrodynamics equations relate to the per-

turbed Einstein equation. This formalism is nicely described in the seminal paper of

Minwalla, et al [6]. We have to perturb the metric components and solve the Einstein

equation perturbatively. In the asymptotically ADS space-time (we take here it is five

dimensions), the ”boosted black brane” metric is

ds2 = −2uµdx
µdr − r2f(br)uµuνdx

µdxν + r2∆µνdx
µdxν , (9)

with

f(r) = 1− 1

r4
, ui =

βi√
1− β2

, uv =
1√

1− β2
, T =

1

πb
. (10)

which have to satisfy the Einstein equation with negative cosmological constant

RMN −
1

2
gMNR− 6gMN = 0, R = −20. (11)
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In simple words, the fluid/gravity correspondence works as it follows. Promote the uµ

and b field to local ones, say (uµ(x), b(x)). It is evident that Einstein equation (11)

doesn’t hold anymore. Therefore, we have to add to the metric components given in (9)

a local ones gMN(x) such that Einstein equation again does hold. This adding procedure

is done perturbatively, namely as a Taylor series in xµ. This Taylor series is equivalent

to the gradient expansion of RH. A main point is that some parts of Einstein equations,

namely those at the r = c(c → ∞) surface are exactly the hydrodynamics equations of

the boundary theory. Therefore, solving Einstein equation perturbatively in this manner

translates to the gradient expansion of RH equation boundary theory. For example, ideal

fluid corresponds to the no ”x” dependence in the fields and the derived energy-momentum

tensor of the boundary theory is

T µν =
1

b40
(ηµν + 4uµuν) . (12)

The conservation equation ∂µT
µν = 0 is satisfied trivially. In the first order of expansions

such as

ui = ui0 + εui1 +O(ε2), b = b0 + εb1O(ε2),

g = g0 + εg1 +O(ε2), (13)

we can show that the energy-momentum tensor of the boundary theory is

T µν =
1

b40
(ηµν + 4uµuν)− 2

b3
σµν , (14)

and the conservation equation ∂µT
µν = 0 is nothing but the Navier-Stokes equation. This

process can be continued to the infinity and is equal to the gradient expansion of the

boundary RH equations in a small parameter `mic
`mac

< 1.

In the paper [2] the above mentioned procedure is applied for special channels, namely

the shear and sound channel

δg(xµ) = 2 hxy(x
µ)︸ ︷︷ ︸

shear channel

dxdy + 2 htz(x
µ)︸ ︷︷ ︸

sound channel

dtdz, (15)
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and try to solve the Einstein equation (11) perturbatively. The equations leads to [2]

Shear channel, Z ′′1 −
f(w2 − q2f)− uw2f ′

uf(w2 − q2f)
Z ′1 +

w2 − q2f

uf 2
Z1 = 0,

Sound channel, Z ′′2 −AZ ′2 + CZ2 = 0,

A =
3w2(1 + u2) + q2(2u2 − 3u4 − 3)

uf(3w2 + q2(u2 − 3))
, C =

3w4 + q4(u4 − 4u2 + 3) + q2(4u5 − 4u3 + 4u2w2 − 6w2)

uf 2(3w2 + q2(u2 − 3))
.

(16)

Here, f = 1 − u2 and w = ω
2πT

and q = q
2πT

. Special way has to be taken to solve these

equations, consistent with the physics of black hole and the boundary theory[2]. It is

worthwhile to mention that both of q and w are taken to be in the C2 plane. The w is

called the quasinormal modes of the black hole. The shear and sound channel have the

follwing expansion for quasinormal modes

wshear = −i
∞∑
n=1

cnq
2n = −ic1q2 + . . . ,

w±sound = −i
∞∑
n=1

ane
± iπn

2 (q2)
n
2 = ±a1q + ia2q

2 . . . . (17)

Giving the q will enable us to get the ws. The author argued in first pages that what

are the nature of equations which we derive modes from them. Suppose that the general

form of equation of modes is P (q2, ω) = 0. By definition, a regular point is a point where

P (q2r , ωr) = 0,
∂P (q2, ω)

∂ω

∣∣∣∣
ωr

6= 0. (18)

If a point such as this one to be exist, then we could run the normal Taylor expansion

around the (q2r , ωr)

ω =
∞∑
n=1

an(q2 − q2r)n = a1(q
2 − q2r) + . . . . (19)

In other side, a critical point of order ”p” is a point which

P (q2c , ωc) = 0,
∂P (q2, ω)

∂ω

∣∣∣∣
ωc

= 0, . . .
∂p−1P (q2, ω)

∂ωp−1

∣∣∣∣
ωc

= 0,
∂pP (q2, ω)

∂ωp

∣∣∣∣
ωc

6= 0. (20)
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Figure 2: Solutions for quasinormal modes in a special q. The above row is for shear
channel and bottom row is for sound channel. Turning around each mode is represented
by varying the θ angle, q2 = |q|2eiθ. When the modes start to collide with each other, we
start to lose the convergence.

If (q2c , ωc) is such a point, then we could not do the regular Taylor expansion, but we have

p branches for (ωi(q
2), i = 1, . . . p) which have fractional expansion around q2c

ωi =
∞∑
n=1

ain(q2 − q2c )
n
bi . (21)

This called the Puiseux series. In the Puiseux series, radius of convergence is the distance

from origin to the first critical point. In this work, this distance is the location where the

quasinormal modes start to collide with each other. In the Fig. 2 the real and imaginary

parts of qusinormal modes for special q is sketched As you see by increasing the |q|2, the

modes start to collide. For shear and sound channel the critical value of this momentum

is

Shear channel, |q|2c = 1.49,

Sound channel, |q|2c = 1.41. (22)

Therefore, for shear modes if q < 1.49 we have finite radius of convergence and gradient

expansion of RH works and if q < 1.41 for sound modes, we have again finite radius of

convergence for gradient expansion and it works. This means that at small momentum

limit, we restore gradient expansion formalism without any need to trans-series or such

stuffs, but at higher momentum we have to trust to RH at later times when the hydro-
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dynamization time arises. It has to be mentioned that these critical values corresponds

to large momenta. For example, if T = 300MeV , then we can have finite radii of conver-

gence up to the k ∼ 2.63GeV .

Now which we would familiar with the topic, let us to address the points of the paper [3].

As we see, the expanding plasma with say Bjorken symmetry in 1+1 dimension have zero

radius of convergence, but the strong regime calculations show that the gradient series

in dispersion relation could have finite radius of convergence. Does this tension is real or

not? In this paper [3], the authors try to resolve the apparent inconsistency and they find

that

The real space hydrodynamic gradient expansion diverges if initial data sup-

port in momentum space exceeding a critical value, and convergences other-

wise. This critical value is an intrinsic property of the microscopic theory

and corresponds to a branch point of the spectrum where hydrodynamic and

nonhydrodynamic modes first collide.

Their work is under completion and the final and more detailed version of their calculation

is supposed to release soon. Just in this paper, they try to clarify the idea.

Without going further into the details, I just highlight the main points. For uncharged

system, the general form of energy-momentum tensor can be written as

T µν = (E + P)uµuν + Pηµν + Πµν . (23)

They focus on the conformal fluid which possesses some constrains over the quantities

such as Πµ
µ = 0 and P = E

d−1 and the general form of the viscous tensor can be written as

Πµν = −ησµν + τπηDσµν −
1

2
θ1DαDασµν − θ2D<µDν>Dαuα + . . . . (24)

Here, D ≡ uµ∂µ,Dµ = ∆µν∂ν and σµν = 2D<µuν>. Ellipsis denotes the higher than third

order terms of gradients. We can evaluate the hydro modes by the method described

vastly in our previous talks

ωshear = −i η
sT
k2 − i( η

2τπ
s2T 2

− θ1
2sT

)k4 + . . . ,

ω±sound = ±cs(k2)
1
2 − iΓk2 ∓ Γ

2cs
(Γ− 2c2sτπ)(k2)

3
2 + . . . . (25)

The main properties of the paper [3] is to understand the properties of gradient expansion

in relation (24) in the linearized regime in real space that facilitate comparison with earlier

studies. They propose a novel way to parametrize Πµν which is constructed from three
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tensorial structures

σij =

(
∂iuj + ∂jui −

2

d− 1
δij∂ku

k

)
,

πεij =

(
∂i∂j −

1

d− 1
δij∂

2

)
ε,

πuij =

(
∂i∂j −

1

d− 1
δij∂

2

)
∂ku

k. (26)

We take E = ε0 + ε. In this manner, we can write the general of viscous tensor as

Πij = −A(∂2)σij −B(∂2)πεij − C(∂2)πuij, (27)

where A,B and C are infinite series in spatial derivatives

(A,B,C) =
∞∑
n=0

(an, bn, cn) (−∂2)n. (28)

The (an, bn, cn) coefficients are nothing but the transport parameters. For some simple

choices, we could derive the hydro modes. If we take u = (u1, 0, . . . , 0) and k = (0, . . . , k)

we can derive the shear modes

ωshear = −i 1

sT

∞∑
n=0

an(k2)n+1. (29)

If we take u = (0, . . . , ud−1) and k = (0, . . . , k), by solving the following matrix valued

equation, we are able to derive the sound modes

− iωε+ iksTud−1 = 0,

− iωsTud−1 +
1

d− 1
ikε+

d− 2

d− 1

∞∑
n=0

(2an − bn−1)(k2)n+1ud−1 +
d− 2

d− 1

∞∑
n=0

icn(k2)n+
3
2 ε = 0.

(30)

Important thing to look for the convergence properties, is to know about the growth of

transport parameters. We could say that (an, bn, cn) grow in a manner controlled by the

position of branch points closest to the origin k = 0[7]

lim
n→∞

|an|
1
n = |kA? |−2. (31)

Similar expression holds for bn and cn, say |kB? |−2 and |kC? |−2. Therefore, the convergence

properties of viscous tensor in the relation (27) firmly depends on the transport parameters
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(an, bn, cn) and their kind of growth as well as the particular solutions ε and u. The

support in momentum space plays a crucial role to determine the radius of convergence.

According to the Paley-Wiener theorem [8], the Fourier transform of a square-integrable

function f̂(k) supported in |k| < |kmax| is an entire function of exponential type |kmax|
and it follows

lim
n→∞

sup|f (n)(x)|
1
n = |kmax|. (32)

Combining the equations (31) and (32), we reach to

lim
n→∞

sup|an∂2nx σij|
1
n =
|kmax|2

|kA? |2
. (33)

For convergence criterium we should have |kmax|
2

|kA? |2
< 1. In a simple example, they try to

derive the |kmax|. For ε = 0 and u = (u1, 0, . . .), we have just the following non-vanishing

component

Π1,d−1 = −
∞∑
n=0

an∂
2n+1
x u1(t, x). (34)

This channel contribute to the shear mode and the general structure of shear mode is

ωshear = i
−1 +

√
1− 4Dτπk2

2τπ
, D =

η

sT
. (35)

Comparing the latter equation with equation (29), we could derive the an such as

an = sTCnτnπDn+1. (36)

Therefore, we have

|kA? | =
(

lim
n→∞

sup|an|
1
n

)− 1
2

=
1√

4Dτπ
, (37)

which is also the location of branch point in equation (35). In the Fig 3, they look

for the ratios of successive contributions for various |kmax|. The figure was drawn for

(t, x) = (1, 0.5) with (s = T = η = τπ = 1) which leads to the |kA? | = 1
2
. If kmax <

1
2

we

lead to the convergent series, while diverges otherwise. In the inset picture, you see the

factorial growth of δn when kmax → ∞, the well known realization of divergence in the

RH addressed in lots of papers.
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Figure 3: Ratios of successive contributions for the given values described in text. From
top to bottom, kmax = 0.55, 0.51, 0.49, 0.45. The gradient expansion is convergent for
kmax < |kA? | = 1

2
and diverges otherwise. Inset: when kmax →∞ the δn was sketched. As

you see, factorial growth manifests itself.
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