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Does it work in relativity?

𝐺 𝑥, 𝑡 =
1

4𝜋𝐷𝑡
𝑒𝑥𝑝 −

𝑥2

4𝐷𝑡
The Green function is

It describes how an initial 
condition 𝛿 𝑥 evolves in time

Localized 
source

The tail of the Gaussian is a signal which 
propagates outside the light-cone

Faster than light communication.

Causality broken!



What if  we “Boost”  it?

If we apply the Lorentz transformation: ቊ
𝑡′ = 𝛾 𝑡 − 𝑣𝑥

𝑥′ = 𝛾 𝑥 − 𝑣𝑡

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕𝑥2
becomes

𝜕𝑇

𝜕𝑡′
− 𝑣

𝜕𝑇

𝜕𝑥′
= 𝐷𝛾

𝜕2𝑇

𝜕𝑥′2
− 2𝑣

𝜕2𝑇

𝜕𝑥′𝜕𝑡′
+ 𝑣2

𝜕2𝑇

𝜕𝑡′2

A second-order term in time

The state-space in the boosted frame is larger! There are more degrees of freedom:

In the frame of the medium In the boosted frame𝑇 𝑇,
𝜕𝑇

𝜕𝑡′

Warning! 𝑇−1 ≔ −𝛽𝜈𝛽
𝜈 so I 

do not need to “transform” 𝑇
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Instability

Let us study the homogeneous solutions in the boosted frame

𝜕𝑇

𝜕𝑡′
− 𝑣

𝜕𝑇

𝜕𝑥′
= 𝐷𝛾

𝜕2𝑇

𝜕𝑥′2
− 2𝑣

𝜕2𝑇

𝜕𝑥′𝜕𝑡′
+ 𝑣2

𝜕2𝑇

𝜕𝑡′2

𝜕𝑇

𝜕𝑡′
= 𝐷𝛾𝑣2

𝜕2𝑇

𝜕𝑡′2

𝑇 = 𝑇0 +
ሶ𝑇0

Γ+
𝑒Γ+ 𝑡′ − 1 Γ+ =

1

𝐷𝛾𝑣2
> 0

2 parameters to set in the 
initial conditions instead of 1

Our freedom of setting ሶ𝑇0 ≠ 0 creates a class of solutions which explode for 𝑡′ → +∞

This instability has no Newtonian analogue.

t

T

Thermal runaway!



If  I go back to the rest-frame of  the medium

𝑇(𝑥, 𝑡) ~ 𝑒Γ+𝛾(𝑡−𝑣𝑥)

Initial thermal profile: 𝑇(𝑥, 0) ~ 𝑒−Γ+𝛾𝑣𝑥

Space-time dependence 
of the kind:

𝑥 −
1

𝑣
𝑡

Exponential profile which shifts rigidly faster than light!
Completely non-realistic situation:
1) Strong acausality
2) Infinite temperature for 𝑥 → −∞
3) Incompatible with the assumptions which lead to the diffusion 

equation in the first place

𝑣−1

𝑇

𝑥

This instability is unphysical, but, working in 
the boosted frame, we would need to fine-
tune the initial conditions to avoid it.

10.1103/PhysRevD.62.023003Kostaedt & Liu (2000):

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1103%2FPhysRevD.62.023003&v=ebc70614


The Eckart approach to dissipation

𝑇𝜇𝜈 = 𝜌 + 𝑃 𝑢𝜇𝑢𝜈 + 𝑃𝑔𝜇𝜈 + 𝑞𝜇𝑢𝜈 + 𝑞𝜈𝑢𝜇 + Π𝑔𝜇𝜈 + Π𝜇𝜈

Heat flux Bulk-viscous stress Shear-viscous stress

In Newtonian physics:

𝒒 = −𝑘∇𝑇Fourier Law:

Navier-Stokes: Π = −𝜁𝜕𝑗𝑢
𝑗

Π𝑗𝑘 = −𝜂 𝜕𝑗𝑢𝑘 + 𝜕𝑘𝑢𝑗 −
2

3
𝜕𝑙𝑢

𝑙𝛿𝑗𝑘

All the dissipative pieces in the 
stress-energy tensor are assumed 
proportional to spatial gradients
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Heat flux Bulk-viscous stress Shear-viscous stress

In Newtonian physics:

𝒒 = −𝑘∇𝑇 − kTaFourier Law:

Navier-Stokes: Π = −𝜁𝜕𝑗𝑢
𝑗

Π𝑗𝑘 = −𝜂 𝜕𝑗𝑢𝑘 + 𝜕𝑘𝑢𝑗 −
2

3
𝜕𝑙𝑢

𝑙𝛿𝑗𝑘

All the dissipative pieces in the 
stress-energy tensor are assumed 
proportional to spatial gradients

Eckart in essence: almost all the Newtonian relations still hold… in the reference frame of the fluid element.



Again… a second derivative!

If the fluid element is moving the derivatives in space are boosted: 

𝜕

𝜕𝑥
= 𝛾

𝜕

𝜕𝑥′
− 𝑣

𝜕

𝜕𝑡′

This produces derivatives in time with no Newtonian analogue.
The dissipative pieces, thus, acquire time-derivative terms,
e.g.

Π = −𝜁𝜕𝑗𝑢
𝑗 Π = −𝜁𝜕𝜈𝑢

𝜈 = −𝜁 𝜕𝑗𝑢
𝑗 + 𝜕𝑡𝑢

𝑡Boost

On the other hand, the equations of motion are simply the energy-momentum and particle conservations
which, in turn, involve an other derivative in time

𝜕𝜇𝑇
𝜇𝜈 = 𝜕𝑗𝑇

𝑗𝜈 + 𝜕𝑡𝑇
𝑡𝜈 = 0 Same as the heat equation: the Navier-Stokes equations, which 

were first-order in time in Newtonian physics, become second 
order in relativity!



Again…

We obtain a collection of dispersion relations

𝜔𝑗 = 𝜔𝑗(𝑘)

In Newtonian Navier-Stokes one only finds the Hydro-modes:

𝜔𝑆𝑂 = ±𝑐𝑠𝑘 − 𝑖 ΓSO𝑘
2 + 𝑂 𝑘3 𝛤𝑆𝑂 > 0

𝜔𝑆𝐻 = −𝑖 ΓS𝐻𝑘
2 + 𝑂 𝑘3 𝛤𝑆𝐻 > 0

Sound waves

Shear waves

They are gapless and stable.

|𝜔|

𝑘

Gapless: lim
𝑘→0

𝜔 𝑘 = 0

Stable:        𝐼𝑚 𝜔 ≤ 0

Linear stability: we look for solutions of the form

𝑓 𝑥, 𝑡 = 𝑓0 + 𝛿𝑓 𝑒𝑖 𝑘𝑥−𝜔𝑡

Equilibrium solution Small perturbation

Hydro



… an explosion!

Linear stability: we look for solutions of the form

𝑓 𝑥, 𝑡 = 𝑓0 + 𝛿𝑓 𝑒𝑖 𝑘𝑥−𝜔𝑡

We obtain a collection of dispersion relations

Equilibrium solution Small perturbation

𝜔𝑗 = 𝜔𝑗(𝑘)

In Eckart theory one still finds the Hydro-modes

𝜔𝑆𝑂 = ±𝑐𝑠𝑘 − 𝑖 ΓSO𝑘
2 + 𝑂 𝑘3 𝛤𝑆𝑂 > 0

𝜔𝑆𝐻 = −𝑖 ΓS𝐻𝑘
2 + 𝑂 𝑘3 𝛤𝑆𝐻 > 0

Sound waves

Shear waves

But also some gapped mode (some mode which survives in the homogeneous limit)

|𝜔|

𝑘

Gapped: lim
𝑘→0

𝜔 𝑘 ≠ 0

Unstable:    𝐼𝑚 𝜔 > 0

𝜔𝐺 = 𝑖 ΓG + 𝑂 𝑘2 𝛤𝐺 > 0 which turns out to be unstable!

The gapped mode exists because of the higher order in time of the equations.

Hydro

Gapped



What went wrong?

• Every thermodynamic system admits a 
maximum entropy state.

• Since the entropy grows, the system will 
eventually converge to this state for every
initial condition.

• This state is the thermodynamic 
equilibrium (which is necessarily stable 
under perturbations: Lyapunov criterion).

A system in thermodynamic equilibrium 
can never exhibit instabilities



The origin of  the problems

Newtonian Navier-Stokes:

The only degrees of freedom
are the thermodynamic fields

Equilibrium = Maximum 
entropy state

The total entropy is always
maximised in homogeneous
states (if basic thermodynamic 
conditions are respected). 
Therefore the Hydro-modes 
necessarily reduce the 
entropy.

𝑇, 𝜇, 𝑢𝑗

In conclusion:
the equilibrium is 
stable in Newtonian 
Navier-Stokes

As a consequence, for fixed 
constants of motion, there is 
only one homogeneous state. 
Gapped modes cannot exist.

The number of constants of 
motion equals the number of 
thermodynamic fields

𝐸,𝑁, 𝑝𝑗

Hydro-mode

S



The origin of  the problems

Eckart theory:

The instability is 
thermodynamical! The 

obedience of the 
system to the second 
law is the very origin 

of the runaway!

Relativity opens new path in 
which the entropy can grow 
with no bound

The degrees of freedom now
are the thermodynamic fields 
and their derivatives in time

𝑇, 𝜇, 𝑢𝑗 , 𝜕𝑡𝑇, 𝜕𝑡𝜇, 𝜕𝑡𝑢
𝑗

Their number exceeds the 
number of constants of motion. 
Therefore there is room for a 
large variety of new 
homogeneous configurations 
which are dynamically 
accessible. Gapped modes are a 
necessity.

It happens that in the 
Eckart theory the entropy 
grows along the gapped 
modes.

Newtonian state-space



Should hydrodynamics describe the gapped modes?

No!

“The gapped mode which is responsible for the 
instability is outside of the validity regime of the 
hydrodynamic approximation”*

- Frame-Stabilised first-order theories 
(Bemfica-Disconzi-Noronha-Kovtun)

Yes!

“In any realistic physical theory we expect that if a 
thermodynamic force is switched on/off a relaxation 
time will lapse before the corresponding 
thermodynamic flux is switched on/off”*

- Second-order theories (Israel-Stewart)
- Divergence-type theories (Liu-Muller-Ruggeri)
- Variational approach (Carter)

10.1007/JHEP10(2019)034*P. Kovtun: Relativistic hydrodynamics*L. Rezzolla, O. Zanotti:
Oxford University press

https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1007%2FJHEP10%25282019%2529034&v=17e6cf0b


The way of  the No:  in pills

Do you need to fine-tune the initial conditions?
Just let the equations do it for you!



The way of  the No:  kill the gapped modes fast

|𝜔|

𝑘

Hydro

Gapped

Hydrodynamics is fundamentally an infrared theory:
It works only in the limit 𝜔, 𝑘 → 0

Only this region can be reliably described using 
a hydro approach, you should not trust the rest

There is no point to improve the description of 
the gapped modes

Just make sure that they die fast! 

Reverse this path

Leave this path 
unchanged



The way of  the No:  In practice

𝑇𝜇𝜈 = 𝑂 1 + 𝑂 𝜕

Perform a first-order derivative expansion of the physical tensors

Perfect 
fluid part

Viscous 
part

You include every possible contribution to 𝑂 𝜕 . Thus there is a large 
number of free parameters to fix. In total 16.
How do you fix them? 3 steps:

1) Along the hydro modes (in the IR limit) every theory is equivalent 
to Eckart (or Landau-Lifshitz, if you prefer). Fix the parameters to 
reproduce the viscosity and conductivity coefficients that you 
want.

2) Use the remaining freedom that you have to ensure the stability of 
the Gapped modes. Break the second law along them.

3) There is still enough freedom to make your theory causal!

Change of frame: two first-order theories are 
connected by a change of “hydrodynamic 
frame” if they have the same behaviour along 
the hydro modes, but different behaviour 
along the gapped modes.



The way of  the Yes:  in pills

Do the gapped modes survive in the homogeneous limit?
Then they are thermo-modes!



Extended irreversible thermodynamics

The way of the Yes aims to merge hydrodynamics and non-equilibrium thermodynamics

𝜏 ሶΠ + Π = −𝜁∇𝜈𝑢
𝜈

Π = −𝜁∇𝜈𝑢
𝜈

𝜏 ሶΠ + Π = 0

Intuitively:

Navier-Stokes hydrodynamics

Non-equilibrium thermodynamics

In the microscopic theory the components of the stress-energy tensor are independent degrees of freedom.
Only in the slow limit Navier-Stokes-Fourier relations hold… the gapped modes are not slow!



The way of  the Yes:  fix the entropy

Clearly, the entropy is not realistic, 
it should always admit a maximum

But to study the Hessian of the entropy ALL 
the second-order contributions are needed

Our result: the stability conditions for Israel-Stewart are 
those which make the entropy maximum in equilibrium

We need to go to the second order also 
in the entropy current!



The essence of  our paper
To

ta
l e

n
tr

o
p

y

Amplitude of the gapped mode 𝑘 = 0

𝑠𝜈 = 𝑠𝑢𝜈 +
𝑞𝜈

𝑇
−

𝑏 𝑞𝛼𝑞𝛼
2𝑇 𝜌 + 𝑃

𝑢𝜈

Israel-Stewart entropy current

Hiscock & Lindblom (1983) stability condition

𝑏 > 1

Eckart first-order part Second-order correction



Yes or No?

First of all you should answer this question: “is your system really in the infrared limit?”

If yes, then the choice should be based on
1) Practical convenience (e.g. which one is easier to employ in numerical simulations?)
2) The importance of the entropy in your study (e.g. do you need to have an exact Lyapunov function?)
3) Mathematical robustness (e.g. do you want to ensure strong hyperbolicity?)

Note that along the hydro-modes, in the Infrared limit, the two theories are equivalent, thus no microscopic 
argument can be used to select a “better” theory.

If the system is not in the infrared limit, then the first-order theories are inapplicable by construction.
In this case one should rely on a second-order approach (or abandon hydrodynamics altogether).



…But Neutron Stars are NOT Infrared!

If you make microscopic calculations for the damping NS oscillations (hydro-modes) you find:

𝐼𝑚 𝜔 = −
1

2

𝑘2

𝜌 + 𝑃

𝐴2

1 + 𝐵2𝑅𝑒 𝜔 2
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𝐼𝑚 𝜔 = −
1

2

𝑘2

𝜌 + 𝑃

𝐴2

1 + 𝐵2𝑅𝑒 𝜔 2

Assuming Navier-Stokes hydrodynamics you can derive an effective bulk viscosity making the identification

𝐼𝑚 𝜔 = −
1

2

𝜁 𝑘2

𝜌 + 𝑃
𝜁 =

𝐴2

1 + 𝐵2𝑅𝑒 𝜔 2

The bulk viscosity depends on the frequency!
This effect is usually non-negligible.



…But Neutron Stars are NOT Infrared!

If you make microscopic calculations for the damping of NS oscillations (hydro-modes) you find:

𝐼𝑚 𝜔 = −
1

2

𝑘2

𝜌 + 𝑃

𝐴2

1 + 𝐵2𝑅𝑒 𝜔 2

Assuming Navier-Stokes hydrodynamics you can derive an effective bulk viscosity making the identification

𝐼𝑚 𝜔 = −
1

2

𝜁 𝑘2

𝜌 + 𝑃
𝜁 =

𝐴2

1 + 𝐵2𝑅𝑒 𝜔 2

The bulk viscosity depends on the frequency!

If, instead, you assume Israel-Stewart hydrodynamics, then you need to impose

𝐼𝑚 𝜔 = −
1

2

𝑘2

𝜌 + 𝑃

𝜁

1 + 𝜏2𝑅𝑒 𝜔 2
𝜁 = 𝐴2 𝜏 = 𝐵2

Neutron-star matter is the prototype of an Israel-Stewart fluid, Extended Irreversible Thermodynamics is necessary!



In summary

1) The relativity of simultaneity creates new degrees of freedom with no Newtonian analogue.
2) In this new extended state-space the entropy is no longer maximised in equilibrium.
3) The strict obedience of the system to the second law is the real source of instability.
4) To solve this issue, either you break the second law, or you fix your entropy.



In summary

1) The relativity of simultaneity creates new degrees of freedom with no Newtonian analogue.
2) In this new extended state-space the entropy is no longer maximised in equilibrium.
3) The strict obedience of the system to the second law is the real source of instability.
4) To solve this issue, either you break the second law, or you fix your entropy.

Thank you for your attention!



Appendices



The Cattaneo solution

Fourier law

Cattaneo law

Diffusion equation

Telegraph equation

𝑞 = −𝑘∇𝑇

𝜏 ሶ𝑞 + 𝑞 = −𝑘∇𝑇

𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕 𝑥2

𝜏
𝜕2𝑇

𝜕𝑡2
+
𝜕𝑇

𝜕𝑡
= 𝐷

𝜕2𝑇

𝜕 𝑥2

It was designed to fix the causality problem, but it turned out to fix also the stability.
Our aim is to prove rigorously the universality of this idea for every dissipative process.

Relaxation term, introduces a 
finite signal-propagation speed

Now the equation is of the second 
order also in the rest-frame



A glimpse into how it works

p

n

Mixture of particles of type p and n (the two species comove)

𝑠 = 𝑠(𝜌, 𝑛𝑝, 𝑛𝑛)Equation of state:

Assume there is a reaction of the type

Example:

𝑝 ⇋ 𝑛

∇𝜎𝑛𝑝
𝜎 = −∇𝜎𝑛𝑛

𝜎 = ΞΑ Α = 𝜇𝑛 − 𝜇𝑝

The chemical evolution is governed by the equation

It is a dissipative process (it produces entropy)

𝑇∇𝜎𝑠
𝜎 = ΞΑ2 ≥ 0

Ξ > 0



No magic required…

Some notation:
𝑥𝑠 = 𝑣𝑠
𝑣 = 𝑛𝑝 + 𝑛𝑛

−1

𝑥𝑝 = 𝑣𝑛𝑝
𝑢𝜎 =

𝑛𝑝
𝜎

𝑛𝑝
=
𝑛𝑛
𝜎

𝑛𝑛

ሶ𝑥𝑝 = 𝑣ΞΑ

Volume per particle:

Entropy per particle:

Type-p particle fraction:

Conglomerate 
four-velocity:

∇𝜎𝑛𝑝
𝜎 = ΞΑ

ሶ𝑣 = 𝑣∇𝜎𝑢
𝜎Continuity equation:

Chemical evolution:

Evolution of the type-p 
particle fraction:

𝑥𝑝 = 𝑥𝑝 𝑣, 𝑥𝑠, 𝐴Change of variables:
𝜕𝑥𝑝
𝜕𝑣

ሶ𝑣 +
𝜕𝑥𝑝
𝜕𝑥𝑠

ሶ𝑥𝑠 +
𝜕𝑥𝑝
𝜕𝐴

ሶ𝐴 = 𝑣ΞΑ

Neglect second order in the affinity

Introduce new coefficients:

𝜉 =
1

Ξ

𝜕𝑥𝑝
𝜕𝑣

𝜏 = −
1

𝑣Ξ

𝜕𝑥𝑝
𝜕𝐴

𝜏 ሶ𝐴 + 𝐴 = 𝜉 ∇𝜎𝑢
𝜎



A universal structure

𝜏 ሶ𝐴 + 𝐴 = 𝜉 ∇𝜎𝑢
𝜎

𝜏 ሶ𝑞 + 𝑞 = −𝑘∇𝑇Heat flux

Chemical affinity

They have the same 
mathematical structure!

We proved that any thermodynamically consistent model for bulk viscosity has a relaxation term:

𝜏 ሶΠ + Π = −𝜁 ∇𝜎𝑢
𝜎

Navier-Stokes partIsrael-Stewart relaxation term

Thermodynamics automatically forbids the instability, and to do so it produces these compensating 
terms which cannot be neglected in relativity. This always turns out to make the theory also causal.

We do not need a new theory. We need to understand the thermodynamics content of the theories 
we already have.



In conclusion

• Thermodynamics rules once again.
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