Exotic Matter in Neutron Stars

Veronica Dexheimer

Neutron-Star Core Modelling

 Landau predicted giant nuclei formed when normal nuclei come in close contact at great density and "laws of ordinary quantum mechanics break down" in 1931

- Chadwick discovered neutron in 1932
- Baade and Zwicky proposed that heavy stars explode as supernovae and give birth to neutron stars in 1939
- Oppenheimer and Volkoff
 modeled neutron stars as cold,
 degenerate Fermi gas in 1939

Neutron-Star Core Modelling

 Attractive and repulsive aspects of nuclear force introduced in relativistic model by Walecka in 1974

- Higher-order interactions added to better reproduce nuclear saturation properties by Boguta and Bodmer in 1977
- Hyperons included in modeling by Glendenning in 1979
- Negative parity baryons studied in stars by VD in 2008

Neutron-Star Core Modelling

- Hybrid stars with a "quarkian" core suggested by Ivanenko and Kurdgelaidze in 1969
- Pure quark stars proposed by Itoh in 1970
- Presence of a mixed phase (with hadrons and deconfined quarks) inside neutron stars that conserves global charge proposed by Glendenning in 1991

 Presence of a mixed phase inside proto-neutron stars that conserve global charge and global lepton fraction investigated by Roark and VD in 2018

Neutron-Star Structure

- Nuclear density $\rho_{\rm 0} \, {}^{\sim} \, 10^{15} \, {\rm g/cm^3}$

CMF (Chiral Mean Field) Model

- Non-linear realization of the linear sigma model
- Includes baryons (+ leptons) and quarks
- Baryon and quark effective masses:

$$M_B^* = g_{B\sigma}\sigma + g_{B\delta}\tau_3\delta + g_{B\zeta}\zeta + M_{0_B} + g_{B\Phi}\Phi^2$$
$$M_q^* = g_{q\sigma}\sigma + g_{q\delta}\tau_3\delta + g_{q\zeta}\zeta + M_{0_q} + g_{q\Phi}(1 - \Phi)$$

- 1st order phase transitions or crossovers
- Potential for $\mathbf{\Phi}$ deconfinement order parameter $U = (a_o T^4 + a_1 \mu_B^4 + a_2 T^2 \mu_B^2) \Phi^2$ $+ a_3 T_o^4 \ln(1 - 6\Phi^2 + 8\Phi^3 - 3\Phi^4)$
- Fitted to reproduce nuclear, astrophysical, lattice QCD

QCD Phase Diagram for High Energy

Results from the CMF model

3D QCD Phase Diagrams (Y_s=0)

• T, $\tilde{\mu}$, Y_Q with charge fraction $Y_Q = Q/B = 0 \rightarrow 0.5$ and Gibbs free energy per baryon $\tilde{\mu} = \mu_B + Y_Q \mu_Q$

3D QCD Phase Diagrams (Y_s=0)

- T, $\tilde{\mu}$, Y_Q with charge fraction $Y_Q = Q/B = 0 \rightarrow 0.5$ and Gibbs free energy per baryon $\tilde{\mu} = \mu_B + Y_Q \mu_Q$
- Larger Y_Q (at fixed T) pushes the phase transition to larger $\widetilde{\mu}$
- Lower Y_Q (at fixed T) pushes the phase transition to lower $\widetilde{\mu}$!
- Changes due to $Y_{\rm Q}$ effects on the EoS (particle population) on each side

3D QCD Phase Diagrams (Y_s=0)

10

Slices of 3D QCD Phase Diagrams ($Y_s=0, Y_s \neq /0$ in black)

• For finite net strangeness $Y_S \neq 0$, deconfinement takes place at larger free energy/ baryon chemical potential

Slices of 3D QCD Phase Diagrams $(Y_s=0, Y_s \neq /0 \text{ in black})$

- For finite net strangeness $Y_S \neq 0$, deconfinement takes place at larger free energy/ baryon chemical potential

• For finite net strangeness $Y_S \neq 0$, isospin and charge fraction relation is not trivial $Y_I = Y_Q - 0.5 + \frac{1}{2}$

 Y_S

Charge Fraction Y_Q Overview

- Heavy-ion collisions: $0.4 \rightarrow 0.5$
- Cold catalyzed neutron stars cores: $0 \rightarrow 0.15$
- Supernovae explosions and proto-neutron stars: 0.1 \rightarrow 0.5 (0.4)
- Neutron-star mergers ?

But How Can We Probe the Interiors of Neutron Stars?

Neutron Star Merger 170817

- Observed by LIGO/VIRGO in 17 August 2017
- From galaxy NGC 4993 140 million light-years away
- Observed electromagnetically by 70 observatories on 7 continents and in space Inspiral Merger Ringdown

Merger Simulation with Deconf.

- 3D (T, $\rho_{\text{B}}\text{,}\text{Y}_{\text{c}}\text{)}$ CMF EoS with/without quarks
- Solve coupled Einstein-hydrodynamics system using Frankfurt/IllinoisGRMHD code (FIL)
- Interesting results for final masses of 2.8 and 2.9 $\rm M_{sun}$

• Effects from quarks (h, f, phase) only after the merger 17

Inside the Neutron-Star Merger

- As neutron stars merge, a hot ring with some quarks forms around the center
- Then a very hot region forms in the center with lots of quarks

Merger in the QCD Phase Diagram

• Background: 2D (T, n_B) CMF EoS with 1st order phase transition for $Y_Q = Q/B = 0.05$

Merger in the QCD Phase Diagram

- 3D (T,n $_{\rm B},\!Y_{\rm Q})$ CMF EoS with 1st order phase transition for binaries with

final mass of 2.9 M_{Sun} after deconfinement (~5 ms) but before collapse to black hole

Merger in the QCD phase Diagram

More Phase Diagrams

- Increase in abs. value of charged chemical potential until phase transition, when it drops
- Decrease in charge fraction of core when quarks appear (not reaching heavy-ion/supernovae conditions)

Simulation

• Our simulation on Youtube

Inside Hypermassive Neutron Star

• At 5 ms after merger

- Increase of temperature, entropy per baryon, and s-quark fraction at phase transition
- Total strangeness (hyperons → s-quarks) remains ~ same

Neutron Star Merger 170817

- Observed by LIGO/VIRGO in 17 August 2017
- From galaxy NGC 4993 140 million light-years away
- Observed electromagnetically by 70 observatories on 7 continents and in space Inspiral Merger Ringdown

What have we learned from GW170817?

- Tidal deformability (finite-size effects in end of inspiral): $76 \rightarrow 1045$ with 90% confidence (De et. al 2018)
- New vector-isovector channel that can be added to any model

Results in better
 agreement with Effective
 Field Theory calculations
 for low densities

What have we learned from GW190814?

- Merger of $23.2^{+1.1}_{-1.0}$ M_{Sun} black hole and a $2.59^{+0.08}_{-0.09}$ M_{sun} "?"
- New vector interactions increase masses to $\sim 2.1 \ M_{sun}$
- With phase transitions, rotation close to the Kepler frequency reproduces ${\sim}2.5~{\rm M}_{\rm sun}$ stars with hyperons and quarks

Conclusions and Outlook

- Astrophysics provides an ideal testing ground for nuclear physics
- Conditions created in neutron-star mergers are unique (Y_Q, Y_I, Y_S, leptons, ...)

- Y_Q , Y_I affect significantly the deconfinement to quark matter: μ_B can change by up to 130 MeV and $\mu_{Q,I}$ by up to 330 MeV
- Now, we can also see the universe through gravitational waves so, maybe, there will be a clear first signature for quark deconfinement phase transition from astrophysics!
- More realistic models with temperature/exotic degrees of freedom needed to study
 - relation between tidal deformability and nuclear physics
 - realistic neutron-star merger simulations