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● Landau predicted giant nuclei
formed when normal nuclei come
in close contact at great density
and  “laws of ordinary quantum
mechanics break down” in 1931

● Chadwick discovered neutron in 1932

● Baade and Zwicky proposed that heavy stars explode as 
supernovae and give birth to neutron stars in 1939

● Oppenheimer and Volkoff
modeled neutron stars as cold,
degenerate Fermi gas in 1939

Energy Levels

Neutron-Star Core Modelling



Neutron-Star Core Modelling

● Higher-order interacOons added to bePer reproduce 
nuclear saturaOon properOes by Boguta and Bodmer in 
1977

● Hyperons included in modeling by Glendenning in 1979

● NegaOve parity baryons studied in stars by VD in 2008
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● APracOve and repulsive aspects 
of nuclear force introduced in 
relaOvisOc model by Walecka in 
1974
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Neutron-Star Core Modelling
● Hybrid stars with a “quarkian” core suggested
by Ivanenko and Kurdgelaidze in 1969

● Pure quark stars proposed by Itoh in 1970

● Presence of a mixed phase (with hadrons
and deconfined quarks) inside neutron
stars that conserves global charge
proposed by Glendenning in 1991

● Presence of a mixed phase inside proto-neutron stars that 
conserve global charge and global lepton fraction
investigated by Roark and VD in 2018
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Neutron-Star Structure

● Nuclear density 𝜌0 ~ 1015 g/cm3

Outer crust: individual nuclei and electrons

Inner crust: individual nuclei, electrons, and  neutrons

Outer core: uniform nuclear matter
(protons, many neutrons, electrons)

Inner core: hyperons, 
deconfined quarks?
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CMF (Chiral Mean Field) Model
● Non-linear realizaOon of the linear sigma model
● Includes baryons (+ leptons) and quarks
● Baryon and quark effecOve masses:

● 1st order phase transiOons or crossovers
● PotenOal for 𝚽

deconfinement
order parameter

● FiPed to reproduce nuclear, astrophysical, laice QCD
6
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● Results from the CMF model
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● T,     ,        with charge fraction                     = 0 → 0.5
c

and Gibbs free energy per baryon

3D QCD Phase Diagrams (YS=0)
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● T,     ,        with charge fracOon                     = 0 → 0.5
c

and Gibbs free energy per baryon

● Larger YQ (at fixed T) pushes the phase transiOon to larger
● Lower YQ (at fixed T) pushes the phase transiOon to lower     !   
● Changes due to YQ effects on the EoS (parOcle populaOon) on 

each side  

3D QCD Phase Diagrams (YS=0)



3D QCD Phase Diagrams (YS=0)
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Gibbs free energy 
per baryon
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● For finite net strangeness              , deconfinement takes place 
at larger free energy/ baryon chemical potenOal
n\
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● For finite net strangeness              , deconfinement takes place 
at larger free energy/ baryon chemical potential
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● For finite net strangeness              , isospin and
m

charge fraction relation is not trivial

shift



Charge FracOon YQ Overview
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● Heavy-ion collisions: 0.4 → 0.5

● Cold catalyzed neutron stars cores: 0 → 0.15

● Supernovae explosions and proto-neutron stars: 0.1 → 0.5 (0.4) 

● Neutron-star mergers ?
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But How Can We Probe the 
Interiors of Neutron Stars?



Neutron Star Merger 170817
● Observed by LIGO/VIRGO in 17 August 2017

● From galaxy NGC 4993 140 million light-years away

● Observed electromagneOcally by 70 observatories on 7 
conOnents and in space
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Merger Simulation with Deconf.
● 3D (T, 𝛒B,Yc) CMF EoS with/without quarks

● Solve coupled Einstein-hydrodynamics system using 
Frankfurt/IllinoisGRMHD code (FIL)

● Interesting results for final masses of 2.8 and 2.9 Msun

● Effects from quarks (h, f, phase) only after the merger 17

phase difference phase difference



Inside the Neutron-Star Merger
● As neutron stars merge, a hot ring with some quarks 

forms around the center

● Then a very hot region forms in the center with lots of 
quarks
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time since merger=2 ms time since merger=7 ms Ome since merger=15 ms



Merger in the QCD Phase Diagram
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● Background: 2D (T,nB) CMF EoS with 1st order phase 
transiOon for YQ=Q/B=0.05
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Merger in the QCD Phase Diagram
● 3D (T,nB,YQ) CMF EoS with 1st order phase transiOon for 

binaries with
final mass
of 2.9 MSun
ater
deconfinement
(~5 ms) 
but before
collapse to
black hole
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Merger in the QCD phase Diagram
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● Tracking maximum temperature ● and density in 
merger
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More Phase Diagrams
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● Tracking maximum temperature ● and density 

● Increase in abs. value of charged chemical potential until 
phase transition, when it drops

● Decrease in charge fraction of core when quarks appear
(not reaching heavy-ion/supernovae conditions)
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Simulation
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● Our simulaOon on Youtube

https://tinyurl.com/tfqces2


Inside Hypermassive Neutron Star
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● At 5 ms after merger

● Increase of temperature, entropy per baryon, and s-quark 
fraction at phase transition

● Total strangeness (hyperons ➜ s-quarks) remains ~ same



Neutron Star Merger 170817

postmerger not yet observed!

● Observed by LIGO/VIRGO in 17 August 2017

● From galaxy NGC 4993 140 million light-years away

● Observed electromagnetically by 70 observatories on 7 
continents and in space
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What have we learned from GW170817?

← ωρ coupling
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● Tidal deformability (finite-size effects in end of inspiral):
76 ® 1045 with 90% confidence (De et. al 2018)

● New vector-isovector channel
that can be added to any model ωρ coupling

● Results in better 
agreement with Effective 
Field Theory calculations 
for low densities



What have we learned from GW190814?
● Merger of 23.2'(.)*(.( MSun black hole and a 2.59').)-*).). Msun “?”

● New vector interactions increase masses to ∼2.1 Msun

● With phase transitions, rotation close to the Kepler frequency 
reproduces ∼2.5 Msun stars with hyperons and quarks
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Conclusions and Outlook
• Astrophysics provides an ideal

tesOng ground for nuclear physics

• CondiOons created in neutron-star
mergers are unique (YQ, YI, YS, leptons, …)

• YQ, YI affect significantly the deconfinement to quark maPer: 𝜇B
can change by up to 130 MeV and 𝜇Q ,I by up to 330 MeV

• Now, we can also see the universe through gravitaOonal waves 
so, maybe, there will be a clear first signature for quark 
deconfinement phase transiOon from astrophysics!

• More realisOc models with temperature/exoOc degrees of 
freedom needed to study 

- relaOon between Odal deformability and nuclear physics
- realisOc neutron-star merger simulaOons


