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Relativistic ideal fluids

A (relativistic) ideal fluid is described by the (relativistic) Euler equations

∇αT αβ = 0,

∇αJα = 0,

where T is the energy-momentum tensor of an ideal fluid given by

Tαβ = (p+ %)uαuβ + pgαβ,

and J is the baryon current of an ideal fluid given by

Jα = nuα.

Above, % is the fluid’s (energy) density, n is the baryon density, p = p(%, n)
is the fluid’s pressure, and u is the fluid’s (four-)velocity, which satisfies

gαβu
αuβ = −1.

g is the spacetime metric and ∇ the corresponding covariant derivative.
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The need for relativistic viscous fluids

The Euler equations are essential in the study of many physical systems in
astrophysics, cosmology, and high-energy physics.

There are, however, important situations where a theory or relativistic
viscous fluids is needed.
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The quark-gluon plasma (QGP)

QGP: exotic state of matter forming when matter deconfines under extreme
temperatures > 150 MeV and densities > nuclear saturation ∼ .16 fm−3.

Study QGP: matter under extreme conditions; microsecs after Big Bang.

Discovery of QGP: 10 most important discoveries in physics ’00-10 (APS);
continuing source of scientific breakthroughs.

2017 2019 2017 2006

Theory, experiments, numerical simulation, phenomenology: the QGP is a
relativistic liquid with viscosity.
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Neutron star mergers

EoS: uncertain.

Einstein-Euler commonly assumed (time scales for viscous
transport to set in were previously estimated > ten milisec = scale
associated with damping due to gravitational wave emission).

Estimates revised by Alford-Bovard-Hanauske-Rezzolla-Schwenzer (’18):

State-of-the-art numerical simulations of general relativistic ideal
fluids: estimate for characteristic macroscopic scale L associated with
gradients of the fluid variables.

Microscopic theory arguments: estimate for the characteristic
microscopic scales ` of the system.

Conclusion: Knudsen number Kn ∼ `/L may not be small in some cases
⇒ viscous contributions likely to affect the gravitational wave signal.
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From ideal to viscous fluids

Energy-momentum tensor of a relativistic viscous fluid:

Tαβ := (%+R)uαuβ + (p+ P)Παβ + παβ +Qαuβ +Qβuα,

quantities as before (uαu
α = −1); Παβ := gαβ + uαuβ.

Viscous fluxes: R = viscous correction to %; P = viscous correction to p;
Q =heat flow; π = viscous shear stress. p = p(%, n).

Theory of relativistic viscous fluids: defined by specifying the viscous
fluxes. Two choices:

First-order: R, P, Q, and π given in terms of %, u, and their
derivatives. EoM: ∇αT αβ = 0 (+Einstein). (Gradient expansion.)

Second-order: R, P, Q, and π are new variables treated on the same
footing as %, u. EoM: ∇αT αβ = 0 (+Einstein) supplemented by further
equations satisfied by the viscous fluxes. (Moments method.)

First-order theory: π = π(%, u, ∂%, ∂u, . . . ) etc.

Second-order theory: uµ∇µπ + · · · = 0 etc.
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The Eckart and Landau-Lifshitz theories

Starting from:

Tαβ = (%+R)uαuβ + (p+ P)Παβ + παβ +Qαuβ +Qβuα.

Eckart (’40) and Landau-Lifshitz (’50) (first-order): R = 0,

παβ := −2ηΠµ
αΠν

β(∇µuν +∇νuµ −
2

3
∇λuλgµν), P := −ζ∇µuµ, (Qα = 0),

where η = η(%), ζ = ζ(%) are the coefficients of shear and bulk viscosity.

In essence:

1. Covariant generalization of Navier-Stokes.

2. Entropy production ≥ 0.
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Acausality and instability of Eckart and Landau-Lifshitz

The Eckart and Landau-Lifshitz theories violate causality: faster-than-light
signals (Hiscock-Lindblom, ’85; Pichon, ’60).

Equations are not hyperbolic.

The Eckart and Landau-Lifshitz theories are also unstable. (Stability: type
of mode stability.)

Instability/acausality results apply to large classes of first-order theories.
Difficult to construct causal and stable theories of relativistic fluids with
viscosity: great deal of work trying to address the issue.
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The Israel-Stewart theory

Tαβ = (%+R)uαuβ + (p+ P)Παβ + παβ +Qαuβ +Qβuα.

Israel-Stewart: second-order theory (’70s). Modern versions:
Baier-Romatschke-Son-Starinets-Stephanov (’08);
Denicol-Niemi-Molnar-Rischke (’12). EoM: R = 0, ∇αT αβ = 0 and

τPu
µ∇µP + P + ζ∇µuµ = J P ,
τπu

µΠν
α∇µQν +Qα = JQα ,

τπu
λΠ̂µν

αβ∇λπµν + παβ − 2ησαβ = J παβ,

where Π̂ is the u⊥ 2-tensor projection onto its symmetric and trace-free
part; σ is the u⊥ trace-free part of ∇u, τ ′s = τ(%) are relaxation times.

J ′s = ∂%+ ∂u+ ∂P + ∂Q+ ∂π

System is highly complex; large system with non-diagonal principal part.
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Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications!

Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness?

Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Features of the Israel-Stewart theory

For the Israel-Stewart theory:

Stability holds (Hiscock-Lindblom, ’83; Olson, ’89).

Linearization about the global equilibrium
(% = constant, u = constant, viscous = 0) is casual
(Hiscock-Lindblom, ’83; Olson, ’89).

Causality in 1 + 1 (Denicol-Kodama-Koide-Mota, ’08) and in
rotational symmetry (Pu-Koide-Rischke, ’10; Floerchinger-Grossi, ’18).

Very successful in applications to the study of the QGP (numerical
simulations, phenomenology) (Romatschke-Romatschke, ’19).

Good theory for many applications! Local well-posedness? Causality in
3 + 1 without symmetry?

10/18



Theorem: Causality and LWP of the Israel-Stewart
equations (D-Bemfica-Noronha, ’19, ’20)

The Israel-Stewart equations are causal. The Cauchy problem is locally
well-posed in Gevrey spaces. If Q = 0, π = 0, local well-posedness holds in
Sobolev spaces. These results hold with or without coupling to Einstein’s
equations.

Gevrey: |∂αf | ≤ C |α|+1(α!)s on each compact set.

Sobolev:
∫
|∂αf |2 dx <∞, |α| ≤ s.

Proof:

Causality: computation of the system’s characteristics. Intractable by
brute force. Think geometrically: develop calculation techniques
guided by would-be acoustical metrics.

Local well-posedness: derive estimates using techniques of weakly
hyperbolic systems (Leray-Ohya, ’60s). Gevrey: avoid loss of
derivatives. If Q = 0, π = 0, estimates close in Sobolev spaces.
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Limitations of the Israel-Stewart theory

Despite its successes, we should keep in mind some (potential) limitations
of the Israel-Stewart theory:

Not known whether it is applicable to the study of (viscous effects on)
neutron star mergers. LWP in Sobolev?

Not known whether it is applicable to low energy heavy-ion collisions
when vorticity effects and the dynamics of the baryon current are
relevant.

Not capable of describing shocks. Assuming a shock in 1 + 1,
physically acceptable shock solutions do not exist (Geroch-Lindblom,
’91; Olson-Hiscock, ’91).

Motivation for alternative theories.
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Theorem: Breakdown of smooth solutions to the
Israel-Stewart equations (D-Hoang-Radosz, ’20)

There exists an open set of smooth initial data for the Israel-Stewart
equations for which the corresponding unique smooth solutions to the
Cauchy problem break down in finite time. Such data consists of localized
(large) perturbations of constant states.

Proof:

Known strategy: assume the solution exists for all time.

Derive some quantitatively precise estimates for the evolution of P.

Derive a contradiction.

Proof by contradiction: it does not reveal the nature of the singularity; first
breakdown result for Israel-Stewart.

13/18



Theorem: Breakdown of smooth solutions to the
Israel-Stewart equations (D-Hoang-Radosz, ’20)

There exists an open set of smooth initial data for the Israel-Stewart
equations for which the corresponding unique smooth solutions to the
Cauchy problem break down in finite time. Such data consists of localized
(large) perturbations of constant states.

Proof:

Known strategy: assume the solution exists for all time.

Derive some quantitatively precise estimates for the evolution of P.

Derive a contradiction.

Proof by contradiction: it does not reveal the nature of the singularity; first
breakdown result for Israel-Stewart.

13/18



Theorem: Breakdown of smooth solutions to the
Israel-Stewart equations (D-Hoang-Radosz, ’20)

There exists an open set of smooth initial data for the Israel-Stewart
equations for which the corresponding unique smooth solutions to the
Cauchy problem break down in finite time. Such data consists of localized
(large) perturbations of constant states.

Proof:

Known strategy: assume the solution exists for all time.

Derive some quantitatively precise estimates for the evolution of P.

Derive a contradiction.

Proof by contradiction: it does not reveal the nature of the singularity; first
breakdown result for Israel-Stewart.

13/18



Theorem: Breakdown of smooth solutions to the
Israel-Stewart equations (D-Hoang-Radosz, ’20)

There exists an open set of smooth initial data for the Israel-Stewart
equations for which the corresponding unique smooth solutions to the
Cauchy problem break down in finite time. Such data consists of localized
(large) perturbations of constant states.

Proof:

Known strategy: assume the solution exists for all time.

Derive some quantitatively precise estimates for the evolution of P.

Derive a contradiction.

Proof by contradiction: it does not reveal the nature of the singularity; first
breakdown result for Israel-Stewart.

13/18



Theorem: Breakdown of smooth solutions to the
Israel-Stewart equations (D-Hoang-Radosz, ’20)

There exists an open set of smooth initial data for the Israel-Stewart
equations for which the corresponding unique smooth solutions to the
Cauchy problem break down in finite time. Such data consists of localized
(large) perturbations of constant states.

Proof:

Known strategy: assume the solution exists for all time.

Derive some quantitatively precise estimates for the evolution of P.

Derive a contradiction.

Proof by contradiction: it does not reveal the nature of the singularity; first
breakdown result for Israel-Stewart.

13/18



The BDNK theory

The BDNK theory is a first-order theory defined by (D-Bemfica-Noronha,
’18, ’19, ’20; Kovtun, ’19; Hoult-Kovtun, ’20):

Tαβ = (%+R)uαuβ + (p+ P)Παβ + παβ +Qαuβ +Qβuα,

with

R := τR(u
µ∇µ%+ (%+ p)∇µuµ),

P := −ζ∇µuµ + τP(u
µ∇µ%+ (%+ p)∇µuµ),

Qα := τQ(%+ p)uµ∇µuα + βQΠµ
α∇µ%,

παβ := −2ηΠµ
αΠν

β(∇µuν +∇νuµ −
2

3
∇λuλgµν),

where τ ′s, βQ = τ(%), βQ(%).

Lots of terms: need them to fix the causality and instability problems of
Eckart and Landau-Lifshitz. One should let the fundamental principle of
causality constrain which terms are allowed in the theory rather than
decide the possible terms and then try to establish causality
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Theorem: Causality, stability, and LWP of the BDNK
theory (D-Bemfica-Rodriguez-Shao, ’19;
D-Bemfica-Graber, ’20; D-Bemfica-Noronha, ’20)

The BDNK equations are causal and stable. The Cauchy problem is locally
well-posed in Sobolev spaces. These results hold with or without coupling
to Einstein’s equations.

Proof:

Causality: system’s characteristics; think geometrically.

Stability: analysis of the roots guided by causality (general stability
theorem).

LWP: Diagonalize the principal part of the system; can do it because
we understand the characteristics. Diagonalization at the level of
symbols. Rational functions, pass to the PDE: pseudo-differential
operators. Quasilinear problem: pseudo-differential calculus for
symbols with limited smoothness.

Theorem valid with baryon current and p = p(%, n).
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Physical significance of the BDNK theory

Need to connect the BDNK theory with known physics.

Entropy production is ≥ 0 within the limit of validity of the theory
(power counting).

The BDNK tensor is derivable (formally) from kinetic theory in some
specific limits (e.g., barotropic theory).

Test-cases in conformal fluids: Bjorken and Gubser flows.

The BDNK theory has all the good features of the Israel-Stewart theory
plus a good local well-posedness theory in Sobolev spaces, which is lacking
for Israel-Stewart (applications to neutron star mergers).
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Entropy production

First law: TSµ = puµ − uνT νµ − µJµ; dp
%+p = dT

T + nT
%+pd

(
µ
T

)
.

Power counting: φ = O(1), ∇φ = O(∂), ∇2φ, (∇φ)2 = O(∂2), etc.

In a first order approach, ∇µSµ can only be correctly determined up to
O(∂2). (Kovtun, ’19.)

On-shell:

∇µSµ = 2η
σµνσ

µν

T
+ ζ

(∇µuµ)2

T
+ T

[
Πλ
ν∇λ

(µ
T

)] [
Πνα∇α

(µ
T

)]
+O(∂3)

& 0.
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Looking ahead

Some important questions going forward:

LWP of Israel-Stewart in Sobolev spaces.

Formulation of BDNK (and Israel-Stewart) suitable for
general-relativistic numerical simulations.

Shocks in Israel-Stewart and BDNK.

MHD-Israel-Stewart and MHD-BDNK.

...

– Thank you for your attention –
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