Lecture 5
Integrated Object-Oriented Methodologies: USDP and EUP
Unified Software Development Process (USDP)

- Also known as Unified Process (UP)
- First introduced in 1999
- A refined, simplified, and non-proprietary version of the Rational Unified Process (RUP)
- UML-Based
- Use-Case-Driven
- Architecture-centric
- Iterative and Incremental
Unified Software Development Process

- Software lifecycle is decomposed over time in four sequential phases
 - **Inception (Vision Milestone)**
 - Define the vision of the product, scope of the project and the business case
 - **Elaboration (Architecture Milestone)**
 - Refine the definition of the product
 - Define and baseline an architecture
 - Develop a more precise plan for its development and deployment
 - **Construction (Initial Operational Capability Milestone)**
 - Build the product to the point where it can be delivered to its end-users for the first time
 - **Transition (Product Release Milestone)**
 - Transition the product to the user community; this includes manufacturing, delivering, training, and planning for supporting and maintaining the product.
Iterations and Workflows

<table>
<thead>
<tr>
<th>Workflows</th>
<th>Phases</th>
</tr>
</thead>
<tbody>
<tr>
<td>Requirements</td>
<td>Inception</td>
</tr>
<tr>
<td>Analysis</td>
<td></td>
</tr>
<tr>
<td>Design</td>
<td></td>
</tr>
<tr>
<td>Implementation</td>
<td></td>
</tr>
<tr>
<td>Test</td>
<td></td>
</tr>
</tbody>
</table>

- Preliminary Iteration(s)
- Iter. #1
- Iter. #2
- Iter. #n
- Iter. #n+1
- Iter. #n+2
- Iter. #m
- Iter. #m+1

An iteration in the elaboration phase
Inception Phase

- The purpose of Inception is to "get the project off the ground":
 - establishing feasibility - this may involve some technical prototyping to validate technology decisions or proof of concept prototyping to validate business requirements;
 - creating a business case to demonstrate that the project will deliver quantifiable business benefit;
 - capturing essential requirements to help scope the system;
 - identifying critical risks.
Inception – Concerns

- The inception phase is a preparatory stage that attempts to answer the following questions:
 - What is the purpose and objectives of the project? Is it worth the effort?
 - Is the project feasible (e.g. technologically, financially, with current personnel)?
 - Should we buy the system, or build it?
 - Will it be developed now, or built from an existing system?
 - What are the estimated costs and risks?
 - Should we proceed with the project?

- This phase also deals with project planning and project management
 - This includes Gantt charts and plans, budgets, etc.
Inception – Postconditions and Deliverables

<table>
<thead>
<tr>
<th>Conditions of satisfaction</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>The stakeholders have agreed on the project objectives</td>
<td>A vision document that states the project’s main requirements, features, and constraints</td>
</tr>
<tr>
<td>System scope has been defined and agreed on with the stakeholders</td>
<td>An initial use case model (only about 10% to 20% complete)</td>
</tr>
<tr>
<td>Key requirements have been captured and agreed on with the stakeholders</td>
<td>A project glossary</td>
</tr>
<tr>
<td>Cost and schedule estimates have been agreed on with the stakeholders</td>
<td>An initial project plan</td>
</tr>
<tr>
<td>A business case has been raised by the project manager</td>
<td>A business case</td>
</tr>
<tr>
<td>The project manager has performed a risk assessment</td>
<td>A risk assessment document or database</td>
</tr>
<tr>
<td>Feasibility has been confirmed through technical studies and/or prototyping</td>
<td>One or more throwaway prototypes</td>
</tr>
<tr>
<td>An architecture has been outlined</td>
<td>An initial architecture document</td>
</tr>
</tbody>
</table>
Inception Timeline

- An important idea with Inception is that we do not yet know if a project will take place!
 - Often 1 or 2 iterations are required for Inception

- Therefore, since a project may be rejected, it makes sense that the Inception phase should be very short
 - Therefore, if the project gets scrapped, little time (and money) would have been wasted
 - It is not uncommon for Inception to last a few days to a few weeks, maximum
Elaboration Phase

- The purpose of Inception is to understand the problem, whereas Elaboration explores the solution:
 - create an executable architectural baseline;
 - refine the risk assessment;
 - define quality attributes (defect discovery rates, acceptable defect densities, and so on);
 - capture use cases to 80% of the functional requirements;
 - create a detailed plan for the construction phase;
 - formulate a bid that includes resources, time, equipment, staff, and cost.
Elaboration and the Workflows

- In the Elaboration phase, the focus in each of the core workflows is as follows:
 - requirements - refine system scope and requirements;
 - analysis - establish what to build;
 - design - create a stable architecture;
 - implementation - build the architectural baseline;
 - test - test the architectural baseline.
Elaboration - Concerns

- After Elaboration, project risks are essentially eliminated
 - The Architecture and UI have been approved by customers and managers
 - Technically difficult software components have been implemented, or proof-of-concept code has been created to prove it was possible
 - Cost estimates are finalized, so budgets can be approved
 - Preliminary user manuals have been created and analyzed

- Analysis, architecture and design well underway after Elaboration
Elaboration – Postconditions and Deliverables

<table>
<thead>
<tr>
<th>Conditions of satisfaction</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A resilient, robust executable architectural baseline has been created</td>
<td>The executable architectural baseline</td>
</tr>
<tr>
<td>The executable architectural baseline demonstrates that important risks have been identified and resolved</td>
<td>UML static model, UML dynamic model, UML use case model</td>
</tr>
<tr>
<td>The vision of the product has stabilized</td>
<td>Vision document</td>
</tr>
<tr>
<td>The risk assessment has been revised</td>
<td>Updated risk assessment</td>
</tr>
<tr>
<td>The business case has been revised and agreed with the stakeholders</td>
<td>Updated business case</td>
</tr>
<tr>
<td>A project plan has been created in sufficient detail to enable a realistic bid to be formulated for time, money, and resources in the next phases</td>
<td>Updated project plan</td>
</tr>
<tr>
<td>The stakeholders agree to the project plan</td>
<td>Business case</td>
</tr>
<tr>
<td>The business case has been verified against the project plan</td>
<td></td>
</tr>
<tr>
<td>Agreement is reached with the stakeholders to continue the project</td>
<td>Sign-off document</td>
</tr>
</tbody>
</table>
Construction Phase

The purpose of Construction is to iteratively enhance and evolve the previously created artefacts into the target system:

- complete all requirements, analysis, and design
- evolve the architectural baseline generated in Elaboration into the final system.
Construction and the Workflows

We can summarize the kind of work undertaken in each workflow during Construction as follows:

- requirements - uncover any requirements that had been missed;
- analysis - finish the analysis model;
- design - finish the design model;
- implementation - build the Initial Operational Capability;
- test - test the Initial Operational Capability.
Construction – Postconditions and Deliverables

<table>
<thead>
<tr>
<th>Conditions of satisfaction</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>The software product is sufficiently stable and of sufficient quality to be deployed in</td>
<td></td>
</tr>
<tr>
<td>the user community</td>
<td>The software product</td>
</tr>
<tr>
<td></td>
<td>The UML model</td>
</tr>
<tr>
<td></td>
<td>Test suite</td>
</tr>
<tr>
<td>The stakeholders have agreed and are ready for the transition of the software to their</td>
<td></td>
</tr>
<tr>
<td>environment</td>
<td>User manuals</td>
</tr>
<tr>
<td></td>
<td>Description of this release</td>
</tr>
<tr>
<td>The actual expenditures vs. the planned expenditures are acceptable</td>
<td>Project plan</td>
</tr>
</tbody>
</table>
Transition Phase

The purpose of Transition is the ultimate deployment of the software produced at the end of Construction:

- conduct beta test and acceptance test, and correct defects;
- prepare the user sites for the new software;
- tailor the software to operate at the user sites;
- modify the software if unforeseen deployment problems arise;
- create user manuals and other documentation;
- provide user consultancy;
- conduct a post-project review.
Transition and the Workflows

- We can summarize the kind of work undertaken in each workflow during Transition as follows:
 - Requirements - not applicable.
 - Analysis – update the analysis model, if required.
 - Design - modify the design if problems emerge in testing.
 - Implementation - tailor the software for the user site and correct problems uncovered in testing.
 - Test - beta testing and acceptance testing at the user site.
Transition – Postconditions and Deliverables

<table>
<thead>
<tr>
<th>Conditions of satisfaction</th>
<th>Deliverable</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beta testing is completed, necessary changes have been made, and the users agree that the system has been successfully deployed</td>
<td>The software product</td>
</tr>
<tr>
<td>The user community is actively using the product</td>
<td></td>
</tr>
<tr>
<td>Product support strategies have been agreed on with the users and implemented</td>
<td>User support plan</td>
</tr>
<tr>
<td></td>
<td>Updated user manuals</td>
</tr>
</tbody>
</table>
USDP: Strengths and Weaknesses

- **Strengths**
 - Same benefits as RUP
 - Complexity has been significantly reduced.
 - Unlike RUP, Analysis and Design are separate workflows, each with its own specific set of work-units and products.

- **Weaknesses**
 - Same weaknesses as RUP, albeit to a far lesser degree.
 - Business modeling, deployment, and management activities have lost their pivotal roles (as disciplines) in the process.
Enterprise Unified Process (EUP)

- Introduced by Ambler and Constantine in 2000 as an extended variant of RUP
- A revised and refactored version was introduced in 2005
- Motivated by the belief that RUP suffers from serious drawbacks:
 - RUP does not cover system support and eventual retirement.
 - RUP does not explicitly support organization-wide infrastructure development.
 - The iterative nature of RUP is both a strength and a weakness, since the iterative nature of the lifecycle is hard to grasp for many experienced developers.
 - Rational’s approach to developing RUP was initially tools-driven; hence the resulting process is not sufficient for the needs of developers.
Enterprise Unified Process (EUP)

- Extends RUP by adding two new *phases* and two new *disciplines*, one of which was further broken down into seven disciplines in the 2005 version of the methodology.

- Extends the activities in some of the old disciplines of RUP.

- Whereas RUP advocates adherence to UML, EUP makes use of some older modeling notations too; e.g. the use of Data Flow Diagrams for business modeling.

- EUP stresses that use cases are not enough for modeling the requirements; consequently, use cases in EUP do not have the pivotal role they have in RUP.
EUP: Process – Disciplines in Iterations and Phases

[Ambler et al. 2005]
EUP: Process – *Production Phase*

- Focus is on keeping the software in production until it is either replaced with a new version (by executing the lifecycle all over again), or retired and removed.

- There are no iterations during this phase.

- Somewhat similar to the maintenance phase in the generic lifecycle, in that it is mainly concerned with the operation and support of the system.

- Unlike classic maintenance, any need for changing the system (even a bug fix) will result in the reinitiation of the development cycle.
EUP: Process – *Retirement* Phase

- Added in 2002 as the sixth phase

- Focus is on the careful removal of a system from production, either because it is no longer needed or is being replaced. This typically includes:
 - Identification of the existing system’s coupling to other systems.
 - Redesign and rework of other systems so that they no longer rely on the system being retired.
 - Transformation of existing legacy data.
 - Archival of data previously maintained by the system that is no longer needed by other systems.
 - System integration testing of the remaining systems to ensure that they have not been broken via the retirement of the system in question.
EUP: Process – *Operations and Support* Discipline

- Concerned with issues related to operating and supporting the system

- Spans several phases, not only the production phase:
 - During the *construction* phase, and perhaps as early as the *elaboration* phase, the development of operations and support plans, documents, and training manuals is initiated.
 - Artefacts are enhanced and perfected during the *transition* phase, where the discipline will also include the training of the operations and support staff.
 - During the *production* and *retirement* phases, the discipline covers classic maintenance activities.
EUP: Process – *Enterprise Management* Discipline

- Concerned with the activities required to create, evolve, and maintain the organization’s cross-system artefacts, such as:
 - Organization-wide models (requirements and architecture)
 - Software process
 - Standards
 - Guidelines
 - Reusable artefacts

- Broken down into seven disciplines in the 2005 version of the methodology
Added in 2005, these disciplines prescribe enterprise management activities in a more fine-grained fashion:

1. Enterprise Business Modeling
2. Portfolio Management
3. Enterprise Architecture
4. Strategic Reuse
5. People Management
6. Enterprise Administration
7. Software Process Improvement
EUP: Strengths and Weaknesses

Strengths

- Same benefits as RUP
- Addresses enterprise-level issues
- Maintenance is a phase in its own right.
- Attention is given to post-mortem activities when retiring the project (in the form of a new *Retirement* phase).
- Not strictly adherent to UML; other modeling languages such as DFDs are also used.
EUP: Strengths and Weaknesses

- **Weaknesses**

 - Like RUP, EUP is
 - very complex
 - encumbered with a prohibitive number of models
 - suffering high potential for model inconsistency
 - confusing as to the process used
 - hard to customize

 - EUP has added further complexity to RUP by adding two new phases and two new disciplines.

 - Adding the maintenance phase is not sufficient, since any change needed will result in a restart of the development process.
References
