Software Development
Methodologies

| ecturer: Raman Ramsin

L ecture4

Seminal Object-Oriented M ethodologies:
A Feature-Focused Review (Part 2)

Department of Computer Engineering Sharif University of Technology

L Software Development M ethodol ogies

Object-Oriented Software Engineering (OOSE)

m First introduced by Jacobson et al. in 1992

m A simplified version of Jacobson’s Objectory
methodology, first introduced in 1987 and later the

property of Rational Corporation (now acquired by
IBM)

m Covers the full generic lifecycle

Department of Computer Engineering 5 Sharif University of Technology

OOSE: Process

m Analysis: focusing on understanding the system and creating a
conceptual model. Consists of two non-seguential, iterative subphases:

Requirements Analysis, aiming at eliciting and modeling the requirements of
the system. A Requirements Modelis produced.

Robustness Analysis, aiming at modeling the structure of the system. An
Analysis Modelis produced.

m Construction: focusing on creating a blueprint of the software and
producing the code. Consists of two subphases:

Design, aiming at modeling the run-time structure of the system, and also the
inter-object and intra-object behaviour. A Design Model is produced.

Implementation, aiming at building the software. An /mplementation Model/
(including the code) is produced.

m /esting: focusing on verifying and validating the implemented system.
A Test Modelis produced.

Department of Computer Engineering 3 Sharif University of Technology

- Ll
OOSE: Process

Requirements Model
Use case model
Interface descriptions

: A domain model
Analysis || A domain mode

Requirements analysi

- use case modeling Analysis Model
- user interface design Meodeling the system with

- domain modeling i
_ three object types
Robustness analysis " Subsystems

- three object types

b 4

Design Model

Implementation

. environment descriptions
Construction Interaction diagrams
Design » State transition graphs
»- implementation environ- Block design
ment An object model
Implementation —__

) \ Implementation Model

Source code

Testing
Unit testing Testing Model
Intergration testing » Test specifications
System testing Test results

[Jacobson et al. 1992]
Department of Computer Engineering Sharif University of Technology

-
OOSE: Analysis — Requirements Analysis

m Aim: Specify and model the functionality required of the
system, typical means and forms of interacting with the
system, and the structure of the problem domain.

m The model to be developed is the Requirements Model, further
divided into three submodels:

A Use Case Model: which delimits the system and describes the
functional requirements from the user’s perspective.

A Domain Object Model: consists of objects representing entities

derived from the problem domain, and their /inheritance, aggregation
and association relationships.

Interface Descriptions. provide detailed logical specifications of the
user interface and interfaces with other systems.

Department of Computer Engineering Sharif University of Technology

Software Development Methodologies— Le

OOSE: Analysis - Requirements Model

Use Case Model

—_— Add Customer) « —>
_\ communication

Operator Database
Print Customer Data
Print List of uses"
Customers <
Printer

Department of Computer Engineering

[Jacobson et al. 1992]
Sharif University of Technology

Software Development M ethodol ogies —

OOSE: Analysis - Requirements Model

Domain Object Model

Q * « inhents

Customer A
Group O ~
inhents. ¥

O - ° Customer

Individual
Customer

Department of Computer Engineering

contains Q
[O..N]
Customer
Base

[Jacobson et al. 1992]
Sharif University of Technology

-
OOSE: Analysis — Robustness Analysis

m Aim: Map the PRequirements Mode/ to a logical configuration of the
system that is robust and adaptable to change.

m The model to be developed is the Analysis Model:

Shows how the functionality of each and every use case is realized by
collaboration among typed objects (called Analysis Objects).

Shows the subsystems of the system.

m Analysis Objects can be of three types:
Entity. Represent entities with persistent state, typically outliving the use
cases they help realize. They are usually derived from the domain object
model.
Interface: Represent entities that manage transactions between the system
and the actors in the outside world.
Controf. Represent functionality not inherently belonging to other types of
objects. They typically act as controllers or coordinators of the processing
going on in the use cases.

Department of Computer Engineering Sharif University of Technology

OOSE: Analysis - Analysis Model

Analysis Model

O—O

Department of Computer Engineering

Interface / \
O O

Customer Customer
Base

Customer
control

interface object @ Add Customer

[Jacobson et al. 1992]
Sharif University of Technology

-
OOSE: Construction - Design

m Aim: Refine the Analysis Mode/ by taking into account
Implementation features.

m The model to be developed Is the Design Model:

describes the features of the implementation environment

describes the details of the design classes (referred to as
blocks) necessary to implement the system

describes the way run-time objects should behave and
Interact in order to realize the use cases

Department of Computer Engineering 10 Sharif University of Technology

-
OOSE: Construction - Design

m Three Subphases:

Determination of the features of the implementation environment
(DBMS, programming language features, distribution
considerations,...)

Definition of b/ocks (design classes) and their structure:

1. Each object in the Analysis Model is mapped to a b/lock.

2. Implementation-specific blocks are added and the collection is revised.
3. Interfaces and semantics of operations are defined.

Specification of the sequences of interactions among objects and the
dynamic behaviour of each block:
1. An Interaction Diagram is drawn for each of the use cases.

2. A State Transition Graph is used for describing the behaviour of each
block.

Department of Computer Engineering Sharif University of Technology

11

L] Software Development Methodol ogies — L ecture 4

OOSE: Construction - Design Model

Interaction Diagram

System Customer Deposit item Receipt
barder panel

.. Sstart
> create
Activate

item E

%EW Item

printRacaipt)

K e print (Logo, Dafe)
N AntOn (ostream)
- P
‘HQ geiName

| getValue

3 —

N
N T print {STREAM)
N delete "[]
\ deleta I__J
I

Department of Computer Engineering

receiver basis

exists()

Deposit
rtemn

|
insertitem{{ltemn)

inGr

.............

12

Receipt
printer

[Jacobson et al. 1992]

Sharif University of Technology

-
OOSE: Construction - Implementation

m Aim: Produce the code from the specifications of the
packages and blocks defined in the design model.

m The model to be developed Is the /mplementation
Model, which consists of the actual source code and
accompanying documentation.

Department of Computer Engineering 13 Sharif University of Technology

-
OOSE: Testing

m Aim: Verify and validate the implementation model

m The model to be developed Is the 7esting Model, which
mainly consists of:
Test plan
Test specifications
Test results.

m Testing Is done at three levels, starting from the lowest
level:
blocks are tested first
Use cases are tested next
Finally, tests are performed on the whole system

Department of Computer Engineering 14 Sharif University of Technology

gl <ocroDecopen Vithodolages —Leced
OOSE: Pivotal role of the Use Case Model

~ AnalysisProcess | Construction Process | | Testing
3

Use Case Model

¥ >
== o>
Expressed in terms of Structdred by Realised by Implem&nted by Tested by

Class A ... LJ oK
Class B ... L1 FAIL

O <> 0K

> OK

Domain Object Analysis Model Design Model Implementation Testing

Maodel Maodel Maodel

[Jacobson et al. 1992]

Department of Computer Engineering 15 Sharif University of Technology

-
Business Object Notation (BON)

m First introduced by Nerson in a 1992 article, with the
acronym standing for “Better Object Notation”

m A revised and detailed version of the methodology was
put forward In 1995; this time the acronym stood for
“Business Object Notation”.

m The process spans the analysis and design phases of the
generic software development lifecycle.

m Deeply influenced by Eiffel’'s assertion mechanisms and
the notion of Design by Contract

Department of Computer Engineering 16 Sharif University of Technology

Software Development M ethodol ogies —

BON: Process

m Consists of nine steps, or tasks.
m Tasks 1-6 focus on analysis and tasks 7-9 deal with design.

DESCRIPTION

BON DELIVERABLES

Delineate system borderline. Find major
subsystems, user metaphors, use cases.

SYSTEM CHART, SCENARIO CHARTS

List candidate classes. Create glossary of
technical terms.

CLUSTER CHARTS

TAsSK
c | 1
A
T
H
Ez
R
1
N
G3

Select classes and group into clusters.
Classify; sketch principal collaborations,

SYSTEM CHART, CLUSTER CHARTS,
STATIC ARCHITECTURE,
CLASS DICTIONARY

Define classes. Determine commands,
gueries, and constrainis.

CLASS CHARTS

Sketch system behaviors. Identify events,
object creation, and relevant scenarios
drawn from system usage.

EVENT CHARTS, SCENARIO CHARTS,
CREATION CHARTS,
OBJECT SCENARIOS

QZ=m=ROwnmHg
]

Define public features. Specify typed
signatures and formal contracts.

CLASS INTERFACES,
STATIC ARCHITECTURE

Refine system. Find new design classes,
add new features.

CLASS INTERFACES,
STATIC ARCHITECTURE,

CLASS DICTIONARY, EVENT CHARTS,

OBJECT SCENARIOS

Generalize. Factor out common behavior.

CLASS INTERFACES,
STATIC ARCHITECTURE,
CLASS DICTIONARY

7
D
E
5
I
N8
I
N
G

9

Complete and review system. Produce
final static architecture with dynamic
system behavior.

Final static and dynamic models;
all BON deliverables completed.

Department of Computer Engineering

17

[Walden and Nerson 1995]

Sharif University of Technology

BON: Products

System chart
Definition of system and list of associated clusters. Only one
system chart per project; subsystems are described through
corresponding cluster charts,

Cluster charts
Definition of clusters and lists of associated classes and
subclusters, if any. A cluster may represent a full subsystem
or just a group of classes.

Class charts
Definition of analysis classes in terms of commands, queries,
and constraints, understandable by domain experts and non-
technical people.

Class dictionary
Alphabetically sorted list of all classes in the system, showing
the cluster of each class and a short description. Should be
generated automatically from the class charts/interfaces.

{) Static architecture

Set of diagrams representing possibly nested clusters, class
headers, and their relationships. Bird’s eye view of the
system (zoomable).

SYSTEM CHART

EEEEECTTECEEEC CoEEErecooEn

CLUSTER CHART

EEETELOTIECTIED EEETEEOTIECTIEC

CLASS CHART

miSEEECET FREEASEEE ASEERcEd

Static architecture ||

N

Department of Computer Engineering

18

[Walden and Nerson 1995]

Sharif University of Technology

Software Development Methodologies — L

BON:

Department of Computer Engineering

Products

¢ Class interfaces
Typed definitions of classes with feature signatures and

formal contracts. Detailed view of the system.

Creation charts

Usually only one per system, but may be repeated for
subsystems if desirable.

Event charts
Set of incoming external events (stimuli) triggering
interesting system behavior and set of outgoing external
events forming interesting system responses. May be
repeated for subsystems.

¢ Scenario charts
List of object scenarios used to illustrate interesting and
representative system behavior. Subsystems may contain

local scenario charts.

¢ Object scenarios
Dynamic diagrams showing relevant object communication

for some or all of the scenarios in the scenario chart.

Class interface

o Y .

.

CREATION CHART

List of classes in charge of creating instances of other classes.

EE AR RS FRERFISE R RS

EVENT CHART

::::::::::::::::::::::::::::

Object scenario ||

':'I':*, .
)

19

[Walden and Nerson 1995]

Sharif University of Technology

-
BON: Products

LEGEND;
— = intellectual help to create/update

Class dictionary

—————— possible (partial) automatic

generation
SYSTEM CHART CLUSTER CHART CLASS CHART || Class interface |]
= = [. e R e Y = Class text
B | s ‘—U | (source code)

@

Static architecture

i

STATIC MODEL

DyNaAMIC MODEL

EVENT CHART SCENARIO CHART || Object scenario CREATION CHART
|
< + {1+ {3
)

[Walden and Nerson 1995]

Department of Computer Engineering 20 Sharif University of Technology

-
Hodge-Mock

m First introduced in a 1992 article

m Result of research to find an OO methodology for use Iin a
simulation and prototyping laboratory, striving to introduce
higher levels of automation into Air Traffic Control (ATC)
systems

m Extremely rich as to the types of diagrams and tables
produced during the development process

m Due to strong mapping relationships among them, versions of
most diagrams and tables are directly derivable from those
Initially produced.

m Spanning the full generic lifecycle

Department of Computer Engineering Sharif University of Technology

21

=
Hodge-Mock: Process

m Analysis: focus on defining the requirements and identifying the scope,
structure and behaviour of the system. Consists of four subphases:
Requirements Analysis. with the focus on eliciting the requirements

Information Analysis. focus on determining the classes in the problem domain,
interrelationships, and collaborations among their instances

Event Analysis: focus on identifying the behaviour of the system through
viewing the system as a stimulus-response machine

Transition to System Design: focus on providing a more detailed view of the
collaborations among objects

m System Design: with the focus on adding design classes to the class
structure of the system and refining the external behaviour of each class

m Software Design. with the focus on adding implementation-specific classes
and detalls to the class structure of the system, and specifying the internal
structure and behaviour of each class

m /mplementation. with the focus on coding and unit testing
m /esting: focusing on system-level verification and validation

Department of Computer Engineering Sharif University of Technology

22

- Ll
Hodge-Mock: Process

Analysis ; System Design

]
1
e YN\
I]
rivsid
FEGINEmants

e

object-
relationship
diagram

I
|
|
|
|
|
|
I
|
|
|
|
|
|
|
1
1

i
I
|
i
[
|
i
[
[
[
I
[
[
Products Products Products '
object descrphons object descriptions. object descripons :
Syslam-bahaviour script object-behaviowr diagrams objeci-behaviour diagrams
sysiem-behaviour diagrams objeci-behaviour scripts object-imerlace diagrams .
inharMance diagrams object-interdace diagrams object-behaviour scripts :
client-server diagram . object cross-ralerance ! object-processing diagrams f |]
object cross-relerance I I pseudo-code I I
1 | object cross-ralensnce] |
i | I I
: | I | ey |
[] 1 I I and i
;] | | umnel st ;
1 L—‘]] | |
1 1 I I I
f ﬂ"ﬂﬁx— f system 1 software T - I integration
I aevabuation i = avaluation 1 = evaluabon T = and systam
[I W | W | I testing
| I | I |
I I 1 I I
| I i i |
| I 1 Ci I I
1 I I _'__/u—;l:h I i acceplance
] ki i i 1 guida I il o producy
p : 2 : ; evaluation

[Hodge and Mock 1992]

Department of Computer Engineering Sharif University of Technology

23

L Software Development M ethodol ogies

References

m Jacobson, I., Christerson, M., Jonsson, P., Overgaard, G., Object-

Oriented Software Engineering.: A Use Case Driven Approach.
Addison-Wesley, 1992.

m Walden, K., Nerson, J., Seamless Object-Oriented Software
Architecture. Prentice-Hall, 1995.

m Hodge, L. R., Mock, M. T., “A proposed object-oriented development

methodology”. Software Engineering Journal, March 1992, pp. 119-
129.

Department of Computer Engineering Sharif University of Technology

24

