
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 8

GoV Patterns – Architectural

 Part 2

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
2

Sharif University of Technology

Architectural Patterns: Categories

 From Mud to Structure

 Layers, Pipes and Filters, and Blackboard

 Distributed Systems

 Broker; also Microkernel and Pipes and Filters

 Interactive Systems

 Support the structuring of systems that feature human-computer interaction.

 Model-View-Controller and Presentation-Abstraction-Control

 Adaptable Systems

 Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

 Reflection and Microkernel

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
3

Sharif University of Technology

Architectural: Interactive Systems

 Model-View-Controller (MVC): Divides an interactive application into three
components: Model, Views, and Controllers.

 The model contains the core functionality and data.

 Views and controllers together comprise the user interface.

 Presentation-Abstraction-Control (PAC): Defines a structure for interactive
software systems in the form of a hierarchy of cooperating agents.

 Every agent consists of three components: Presentation, Abstraction, and
Control.

 This subdivision separates the human-computer interaction aspects of the agent
from its functional core and its communication with other agents.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
4

Sharif University of Technology

Interactive Systems: Model-View-Controller

 Divides an interactive application into three components.

 The Model contains the core functionality and data.

 Views display information to the user.

 Controllers handle user input.

 A change-propagation mechanism ensures consistency between the user interface
(views and controllers) and the model.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
5

Sharif University of Technology

Interactive Systems: Model-View-Controller

 Context - Interactive applications with a flexible human-computer interface.

 Problem - Forces are as follows:

 The same information is presented differently in different windows, for example,
in a bar or pie chart.

 The display and behavior of the application must reflect data manipulations
immediately.

 Changes to the user interface should be easy, and even possible at run-time.

 Supporting different 'look and feel' standards or porting the user interface
should not affect code in the core of the application.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
6

Sharif University of Technology

Model-View-Controller: Structure – Model

 Contains the data and functional core of the application.

 Provides procedures that perform application-specific processing; controllers call

these procedures on behalf of the user.

 Provides functions to access its data; view components use these functions to

acquire the data to be displayed.

 Implements the change-propagation mechanism :

 Maintains a registry of dependent components (all views and selected controllers).

 Changes to the state of the model trigger the change-propagation mechanism.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
7

Sharif University of Technology

Model-View-Controller: Structure – Views and Controllers

 View components present information to the user.

 Each view defines an update procedure that is activated by the change propagation

mechanism and retrieves data from the model.

 Each view creates a suitable controller.

 Views often offer functionality that allows controllers to manipulate the display.

 Controller components accept user input as events.

 If the behavior of a controller depends on the state of the model, the controller

registers itself with the model and implements an update operation.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
8

Sharif University of Technology

Model-View-Controller: Class Structure

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
9

Sharif University of Technology

Model-View-Controller: Dynamics – Scenario I

 User input that results in changes to the model triggers the
change-propagation mechanism.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
10

Sharif University of Technology

Model-View-Controller: Dynamics – Scenario II

 the MVC triad is initialized.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
11

Sharif University of Technology

Model-View-Controller: Consequences

 Multiple views of the same model

 Synchronized views

 'Pluggable' views and controllers

 Exchangeability of 'look and feel'

 Framework potential

 Increased complexity

 Potential for excessive number of updates

 Close couplings

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
12

Sharif University of Technology

Interactive Systems: Presentation-Abstraction-Control

 Defines a structure for interactive software systems in the form of a hierarchy of
cooperating agents.

 Every agent:

 is responsible for a specific aspect of the application's functionality, and

 consists of three components: presentation, abstraction, and control.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
13

Sharif University of Technology

Interactive Systems: Presentation-Abstraction-Control

 Context - Development of an interactive application with the
help of agents

 Problem - Forces are as follows:

 Agents often maintain their own state and data.

 Interactive agents provide their own user interface.

 Systems evolve over time.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
14

Sharif University of Technology

Presentation-Abstraction-Control: Structure

 Interactive application is structured as a tree-like hierarchy of PAC agents.

 There should be one top-level agent, several intermediate level agents, and
even more bottom-level agents.

 Every agent consists of three components: presentation, abstraction, and
control.

 The Top-level PAC agent:

 provides the functional core of the system;

 includes parts of the user interface that cannot be assigned to subtasks.

 Bottom-level PAC agents:

 represent self-contained semantic concepts on which users of the system can
act, such as spreadsheets and charts.

 Intermediate-level PAC agents:

 represent either combinations of, or relationships between, lower-level agents.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
15

Sharif University of Technology

Presentation-Abstraction-Control: Structure – Agents

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
16

Sharif University of Technology

Presentation-Abstraction-Control: Structure – Components

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
17

Sharif University of Technology

Presentation-Abstraction-Control: Dynamics – Scenario I

 Cooperation between different PAC agents when opening a new bar-chart
view of the election data.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
18

Sharif University of Technology

Presentation-Abstraction-Control: Dynamics – Scenario II

 Behavior of the system after new election data is entered.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
19

Sharif University of Technology

Presentation-Abstraction-Control: Consequences

 Separation of concerns

 Support for change and extension

 Support for multi-tasking

 Increased system complexity

 Complex control component

 Efficiency

 Applicability

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
20

Sharif University of Technology

Architectural: Adaptable Systems

 Reflection: provides a mechanism for changing structure and behavior of
software systems dynamically.

 Supports the modification of fundamental aspects, such as type structures and
function call mechanisms.

 An application is split into two parts.

 A meta level provides information about selected system properties and makes the
software self-aware.

 A base level includes the application logic; its implementation builds on the meta level.

 Microkernel: Applies to software systems that must be able to adapt to
changing system requirements.

 separates a minimal functional core from extended functionality and customer-
specific parts.

 serves as a socket for plugging in such extensions and coordinating their
collaboration.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
21

Sharif University of Technology

Adaptable Systems: Microkernel

 Applies to software systems that must be able to adapt to changing system
requirements.

 Separates a minimal functional core from extended functionality and customer-
specific parts.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
22

Sharif University of Technology

Adaptable Systems: Microkernel

 Context - The development of several applications that use similar
programming interfaces that build on the same core functionality.

 Problem - Forces are as follows:

 The application platform must cope with continuous hardware and software
evolution.

 The application platform should be portable, extensible and adaptable to allow
easy integration of emerging technologies.

 The applications in your domain need to support different, but similar,
application platforms.

 The applications may be categorized into groups that use the same functional
core in different ways: the underlying platform must emulate existing standards.

 The functional core of the application platform should be separated into:

 a component with minimal memory size, and

 services that consume as little processing power as possible.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
23

Sharif University of Technology

Microkernel: Structure – Microkernel

 Fundamental services of the application platform are encapsulated in a
Microkernel component, which

 includes functionality that enables other components running in separate
processes to communicate with each other.

 is responsible for maintaining system-wide resources such as files or processes.

 provides interfaces that enable other components to access its functionality.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
24

Sharif University of Technology

Microkernel: Structure – Servers

 Core functionality that cannot be implemented within the microkernel without

unnecessarily increasing its size or complexity is separated in Internal Servers.

 External Servers are separate processes that represent other application platforms;

they implement their own view of the underlying microkernel.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
25

Sharif University of Technology

Microkernel: Structure – Clients and Adapters

 Clients communicate with external servers by using the communication

facilities provided by the microkernel.

 Adapters represent interfaces between clients and their external servers,

allowing clients to access services of their external server in a portable way.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
26

Sharif University of Technology

Microkernel: Structure – Class Diagram

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
27

Sharif University of Technology

Microkernel: Dynamics – Scenario I

 A client calls a service of its external server

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
28

Sharif University of Technology

Microkernel: Dynamics – Scenario II

 An external server requests a service that is provided by an internal server.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
29

Sharif University of Technology

Microkernel: Consequences

 Portability

 Flexibility and Extensibility

 Separation of policy and mechanism

 Scalability

 Reliability

 Transparency

 Performance

 Complexity of design and implementation

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
30

Sharif University of Technology

Reference

 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

