Patterns in
Software Engineering

| ecturer: Raman Ramsin

L_ecture 8

GoV Patterns — Architectural
Part 2

1 Sharif University of Technology

Department of Computer Engineering



Architectural Patterns: Categories

&

m From Mud to Structure
Layers, Pipes and Filters, and Blackboard

m Distributed Systems
Broker; also Microkernel and Pipes and Filters

m Interactive Systems
Support the structuring of systems that feature human-computer interaction.
Model-View-Controller and Presentation-Abstraction-Contro/

m Adaptable Systems

Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

Reflection and Microkernel/

Department of Computer Engineering Sharif University of Technology



-
Patt . Soft Eng g— Lect . @“@
Architectural: Interactive Systems

m Model-View-Controller (MVC): Divides an interactive application into three
components: Model, Views, and Controllers.

The mode/ contains the core functionality and data.
Views and controllers together comprise the user interface.

m Presentation-Abstraction-Control (PAC): Defines a structure for interactive
software systems in the form of a hierarchy of cooperating agents.

Every agent consists of three components: Presentation, Abstraction, and
Control.

This subdivision separates the human-computer interaction aspects of the agent
from its functional core and its communication with other agents.

Department of Computer Engineering Sharif University of Technology



-
Interactive Systems: Model-View-Controller

m Divides an interactive application into three components.
The Mode/ contains the core functionality and data.
Views display information to the user.
Controllers handle user input.

A change-propagation mechanism ensures consistency between the user interface
(views and controllers) and the model.

core data

Black: 43%
Red: 39%
Blue: 6%
Green: 10%
Others: 2%

ple chart bar chart parliament spreadsheet

Department of Computer Engineering Sharif University of Technology



-
Patt Sft Eng g— Lect . @@j
Interactive Systems: Model-View-Controller

m Context - Interactive applications with a flexible human-computer interface.

m Problem - Forces are as follows:

The same information is presented differently in different windows, for example,
in @ bar or pie chart.

The display and behavior of the application must reflect data manipulations
immediately.

Changes to the user interface should be easy, and even possible at run-time.

Supporting different 'look and feel' standards or porting the user interface
should not affect code in the core of the application.

Department of Computer Engineering Sharif University of Technology



Patterns in Software Engineering — Lecture @3

Model-View-Controller: Structure — Model

m Contains the data and functional core of the application.

m Provides procedures that perform application-specific processing; controllers call
these procedures on behalf of the user.

m Provides functions to access its data; view components use these functions to
acquire the data to be displayed.

m Implements the change-propagation mechanism :
O Maintains a registry of dependent components (all views and selected controllers).
O Changes to the state of the model trigger the change-propagation mechanism.

Class Collaborators
Model * View

* Controller

Responsibility

* Provides functional
core of the
application.

* Registers
dependent views
and controllers.

* Notifies dependent
components about
data changes.

Department of Computer Engineering Sharif University of Technology



- i
Model-View-Controller: Structure — Views and Controllers

m Viewcomponents present information to the user.

0 Each view defines an update procedure that is activated by the change propagation
mechanism and retrieves data from the model.

O Each view creates a suitable controller.
0 Views often offer functionality that allows controllers to manipulate the display.
m  Controller components accept user input as events.

0 If the behavior of a controller depends on the state of the model, the controller
registers itself with the model and implements an update operation.

Class Collaborators Class Collaborators
View * Controller Controller e View
* Model * Model
Responsibility Responsibility
e Creates and initial- * Accepts user input
izes its associated as events.
controller. * Translates events
* Displays to service requests
information to the for the model or
user. display requests for
* Implements the the view.
update procedure. * Implements the
* Retrieves data from update procedure,
the model. if required.

Department of Computer Engineering 5 Sharif University of Technology



Model-View-Controller: Class Structure

Department of Computer Engineering

Observer
update
call update
Model /\
coreData
setOfObservers
View
attach(Observer) attach
detach(Observer) getData | myModel
notify myController
create
Bt i Alieiingel mawpuate|_ Controller
activate display myModel
dl&[j}lztxg myView
upda
attach | initialize(Model.View)
call service | handleEvent
update

Sharif University of Technology



L] Patterns in Software Engineering — Lecture

Model-View-Controller: Dynamics — Scenario |

m User input that results in changes to the model triggers the
change-propagation mechanism.

Model

service

View

oy
-

getData
]
5

1

Controller
handleEvent ]
_—
update
—
| —
< —
-

[

Department of Computer Engineering

display

i

Sharif University of Technology



Patterns in Software Engineering — Lecture 8

Model-View-Controller: Dynamics — Scenario

m the MVC triad is initialized.

Controller

—

L

main program
T
Model
‘—’
View
B =
Model nitialize |
Ejﬁim onic > makeController
,‘—’
Model, View fnitialize
[_J;ttach Controller
-
-t
startEventProcessing

Department of Computer Engineering

10

|

Sharif University of Technology



(o
Model-View-Controller: Conseqguences

v Multiple views of the same model
v Synchronized views

v 'Pluggable' views and controllers
v' Exchangeability of 'look and feel’

v' Framework potential

x Increased complexity
x Potential for excessive number of updates

% Close couplings

Department of Computer Engineering Sharif University of Technology

11



Patterns in Software Engineering — Lecture @3

Interactive Systems: Presentation-Abstraction-Control

m Defines a structure for interactive software systems in the form of a hierarchy of
cooperating agents.

m Every agent:
is responsible for a specific aspect of the application's functionality, and

consists of three components: presentation, abstraction, and control.

Data presentation

Data entry

Document:Votes
Author: Dr. Kohl

black| red
43

Iblackl red |blue |greenl oth.l
|43% 39%| 6% 10%| 2% |

Department of Computer Engineering 12 Sharif University of Technology



L] Patterns in Software Engineering — Lectu @j
and

Interactive Systems: Presentation-Abstraction-Control

m Context - Development of an interactive application with the
help of agents

m Problem - Forces are as follows:

Agents often maintain their own state and data.
Interactive agents provide their own user interface.

Systems evolve over time.

Department of Computer Engineering 13 Sharif University of Technology



=
Patt Soft g g — Lect . @“@
Presentation-Abstraction-Control: Structure

m Interactive application is structured as a tree-like hierarchy of PAC agents.

0 There should be one top-level agent, several intermediate level agents, and
even more bottom-level agents.

0 Every agent consists of three components: presentation, abstraction, and
control.

m The 7op-level/ PAC agent:
provides the functional core of the system;
includes parts of the user interface that cannot be assigned to subtasks.

m Bottom-level PAC agents:
represent self-contained semantic concepts on which users of the system can
act, such as spreadsheets and charts.

m Intermediate-level PAC agents:
represent either combinations of, or relationships between, lower-level agents.

Department of Computer Engineering Sharif University of Technology

14



Patterns in Software Engineering — Lecture 8

Presentation-Abstraction-Control: Structure — Agents

Class
Top-level Agent

Collaborators
* Intermediate-

Responsibility
¢ Provides the func-

tional core of the
system.

* Controls the PAC
hierarchy.

level Agent

* Bottom-level
Agent

Class
Interm. -level Agent

Responsibility
* Coordinates lower-
level PAC agents.

* Composes lower-
level PAC agents to
a single unit of
higher abstraction.

Class
Bottom-level Agent

Collaborators
* Top-level Agent

Responsibility

* Provides a specific
view of the software
or a system service,
including its asso-
ciated human-com-
puter interaction.

Department of Computer Engineering 15

* Intermediate-
level Agent

Collaborators

* Top-level Agent

* Intermediate-
level Agent

* Bottom-level
Agent

&

Sharif University of Technology



L] Patterns in Software Engineering — Lecture 8

Presentation-Abstraction-Control: Structure — components

data repository

top-level

access to data PAC agent

bottom-lcvel
PAC agents

intermediate-level

view coordinator PAC agent

pie chart

seat distribution

ViewCoordinator
Abstraction Control Presentation
barData interactionData presentationData
setChartData sendMs update
getChartData receiveMsg oFen
close
getData zoom
move
Bar-Chart Agent print

Department of Computer Engineering 16 Sharif University of Technology



-
Presentation-Abstraction-Control: Dynamics — Scenario |

i

m Cooperation between different PAC agents when opening a new bar-chart
view of the election data.

Top-level Agent|| View Coor-

dinator Agent
opeﬁView(barChart] Bar-Chart Agent
— > g > Control Abstraction Presentation
receiveMsg(open)
receiveMsg receiveMsg
I__ I (getData) l:]'< (getData) | setChartData
<——_~>E] open
getData
getChartData :I
-
i -
AN r

Department of Computer Engineering Sharif University of Technology

17



-
Presentation-Abstraction-Control: Dynamics — Scenario Ii

i

m Behavior of the system after new election data is entered.

Spreadsheet Top-level Agent View Coor- Bar-chart
Agent Abstraction Control dinator Agent Agent
enter T
data receliveMsg(setData)
setData il
-
sendMsg receiveMsg
(change) receiveMsg
’ gbr (change) (change)
receiveMsg receiveMsg
getData (getData) (getData)
it ~t
g
—
) |

Department of Computer Engineering Sharif University of Technology

18



- _ i
Presentation-Abstraction-Control: Consequences

v' Separation of concerns

v Support for change and extension

v Support for multi-tasking

x Increased system complexity
x Complex control component
x Efficiency

x Applicability

Department of Computer Engineering Sharif University of Technology

19



-
Architectural: Adaptable Systems

m Reflection: provides a mechanism for changing structure and behavior of
software systems dynamically.
Supports the modification of fundamental aspects, such as type structures and
function call mechanisms.
An application is split into two parts.

m A meta level provides information about selected system properties and makes the
software self-aware.

m A base level includes the application logic; its implementation builds on the meta level.

m Microkernel: Applies to software systems that must be able to adapt to
changing system requirements.
separates a minimal functional core from extended functionality and customer-
specific parts.
serves as a socket for plugging in such extensions and coordinating their
collaboration.

Department of Computer Engineering Sharif University of Technology

20



-
Adaptable Systems: Microkernel

m Applies to software systems that must be able to adapt to changing system
reguirements.

Separates a minimal functional core from extended functionality and customer-
specific parts.

of the wx of Design Pasterns.

Exit

Hydra is a new kind of OS. It
emulates existing standard's
by using virneal improbabiliry

driverx

ey 1] Softwoee development learwemg curve of Yogoms

Department of Computer Engineering Sharif University of Technology

21



-
Adaptable Systems: Microkernel

m Context - The development of several applications that use similar
programming interfaces that build on the same core functionality.

m Problem - Forces are as follows:

The application platform must cope with continuous hardware and software
evolution.

The application platform should be portable, extensible and adaptable to allow
easy integration of emerging technologies.

The applications in your domain need to support different, but similar,
application platforms.

The applications may be categorized into groups that use the same functional
core in different ways: the underlying platform must emulate existing standards.

The functional core of the application platform should be separated into:
= 3 component with minimal memory size, and
m Services that consume as little processing power as possible.

Department of Computer Engineering 29 Sharif University of Technology



Patterns in Software Engineering — Lecture @3

Microkernel: Structure — Microkernel

m Fundamental services of the application platform are encapsulated in a
Microkernel component, which

includes functionality that enables other components running in separate
processes to communicate with each other.

is responsible for maintaining system-wide resources such as files or processes.

provides interfaces that enable other components to access its functionality.

Class Collaborators
Microkernel * Internal Server
Responsibthty
* Provides core
mechanisms.

* Offers communi-
cation facilities.

. Enca(q)sulates Sys-
tem dependencies.

* Manages and
controls resources.

Department of Computer Engineering >3 Sharif University of Technology



Microkernel: Structure — Servers

i

m Core functionality that cannot be implemented within the microkernel without
unnecessarily increasing its size or complexity is separated in /nternal Servers.

m External Servers are separate processes that represent other application platforms;

they implement their own view of the underlying microkernel.

Class
Internal Server

Responsibility

* Implements
additional services.

* Encapsulates
some system
specifics.

Collaborators
* Microkemel

Department of Computer Engineering

Class
External Server

Responsibility

* Provides
programming
interfaces for its
clients.

24

Collaborators
* Microkernel

Sharif University of Technology



- He
Microkernel: Structure - Clients and Adapters

m (Clients communicate with external servers by using the communication
facilities provided by the microkernel.

m  Aaaptersrepresent interfaces between clients and their external servers,
allowing clients to access services of their external server in a portable way.

Class Collaborators Class Collaborators
Client * Adapter Adapter e External Server
. . » . - » . i k
Responsibility Responsibility Microkermel
* Represents an * Hides system
application. dependencies such
as communication
facilities from the
client.
* Invokes methods of
external servers on
behalf of clients.
*
Department of Computer Engineering Sharif University of Technology

25



Patterns in Software Engineering — Lecture 8

Microkernel: Structure - Class Diagram

External Server

receiveRequest
dispatchRequest

Microkernel

executeMechanism
iniftCommunication

Internal Server

i

b calls

activates d executeService

receiveRequest
executeService findReceiver

createHandle
sendMessage
callint Server

initializes
communication

Adapter

Client
doTask

callService
createRequest

sends request calls service

Department of Computer Engineering

26 Sharif University of Technology



Patterns in Software Engineering — Lecture 8

Microkernel: Dynamics — Scenario |

m A client calls a service of its external server

Department of Computer Engineering

27

Client Adapter Microkernel External
Server
callService I createRequest
initCommunication
R findRecelver
d
receiveRequest
dispatchRequest
executeService
i :
2444 I

Sharif University of Technology



Patterns in Software Engineering — Lecture 8

&

Microkernel: Dynamics — Scenario |l

m  An external server requests a service that is provided by an internal server.

External
Server

Microkernel

e

Internal
Server

executeMechanism

Department of Computer Engineering

28

callinternalServer
:I receiveReques
— executeService
—

Sharif University of Technology



Microkernel: Consequences

v' Portability

v" Flexibility and Extensibility

v’ Separation of policy and mechanism
v’ Scalability

v' Reliability

v' Transparency

x Performance

x Complexity of design and implementation

Department of Computer Engineering 79

Sharif University of Technology



Patterns in Software Engineering — Lecture

o =

Reference

m Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

Department of Computer Engineering 30 Sharif University of Technology



