
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 8

GoV Patterns – Architectural

 Part 2

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
2

Sharif University of Technology

Architectural Patterns: Categories

 From Mud to Structure

 Layers, Pipes and Filters, and Blackboard

 Distributed Systems

 Broker; also Microkernel and Pipes and Filters

 Interactive Systems

 Support the structuring of systems that feature human-computer interaction.

 Model-View-Controller and Presentation-Abstraction-Control

 Adaptable Systems

 Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

 Reflection and Microkernel

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
3

Sharif University of Technology

Architectural: Interactive Systems

 Model-View-Controller (MVC): Divides an interactive application into three
components: Model, Views, and Controllers.

 The model contains the core functionality and data.

 Views and controllers together comprise the user interface.

 Presentation-Abstraction-Control (PAC): Defines a structure for interactive
software systems in the form of a hierarchy of cooperating agents.

 Every agent consists of three components: Presentation, Abstraction, and
Control.

 This subdivision separates the human-computer interaction aspects of the agent
from its functional core and its communication with other agents.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
4

Sharif University of Technology

Interactive Systems: Model-View-Controller

 Divides an interactive application into three components.

 The Model contains the core functionality and data.

 Views display information to the user.

 Controllers handle user input.

 A change-propagation mechanism ensures consistency between the user interface
(views and controllers) and the model.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
5

Sharif University of Technology

Interactive Systems: Model-View-Controller

 Context - Interactive applications with a flexible human-computer interface.

 Problem - Forces are as follows:

 The same information is presented differently in different windows, for example,
in a bar or pie chart.

 The display and behavior of the application must reflect data manipulations
immediately.

 Changes to the user interface should be easy, and even possible at run-time.

 Supporting different 'look and feel' standards or porting the user interface
should not affect code in the core of the application.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
6

Sharif University of Technology

Model-View-Controller: Structure – Model

 Contains the data and functional core of the application.

 Provides procedures that perform application-specific processing; controllers call

these procedures on behalf of the user.

 Provides functions to access its data; view components use these functions to

acquire the data to be displayed.

 Implements the change-propagation mechanism :

 Maintains a registry of dependent components (all views and selected controllers).

 Changes to the state of the model trigger the change-propagation mechanism.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
7

Sharif University of Technology

Model-View-Controller: Structure – Views and Controllers

 View components present information to the user.

 Each view defines an update procedure that is activated by the change propagation

mechanism and retrieves data from the model.

 Each view creates a suitable controller.

 Views often offer functionality that allows controllers to manipulate the display.

 Controller components accept user input as events.

 If the behavior of a controller depends on the state of the model, the controller

registers itself with the model and implements an update operation.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
8

Sharif University of Technology

Model-View-Controller: Class Structure

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
9

Sharif University of Technology

Model-View-Controller: Dynamics – Scenario I

 User input that results in changes to the model triggers the
change-propagation mechanism.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
10

Sharif University of Technology

Model-View-Controller: Dynamics – Scenario II

 the MVC triad is initialized.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
11

Sharif University of Technology

Model-View-Controller: Consequences

 Multiple views of the same model

 Synchronized views

 'Pluggable' views and controllers

 Exchangeability of 'look and feel'

 Framework potential

 Increased complexity

 Potential for excessive number of updates

 Close couplings

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
12

Sharif University of Technology

Interactive Systems: Presentation-Abstraction-Control

 Defines a structure for interactive software systems in the form of a hierarchy of
cooperating agents.

 Every agent:

 is responsible for a specific aspect of the application's functionality, and

 consists of three components: presentation, abstraction, and control.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
13

Sharif University of Technology

Interactive Systems: Presentation-Abstraction-Control

 Context - Development of an interactive application with the
help of agents

 Problem - Forces are as follows:

 Agents often maintain their own state and data.

 Interactive agents provide their own user interface.

 Systems evolve over time.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
14

Sharif University of Technology

Presentation-Abstraction-Control: Structure

 Interactive application is structured as a tree-like hierarchy of PAC agents.

 There should be one top-level agent, several intermediate level agents, and
even more bottom-level agents.

 Every agent consists of three components: presentation, abstraction, and
control.

 The Top-level PAC agent:

 provides the functional core of the system;

 includes parts of the user interface that cannot be assigned to subtasks.

 Bottom-level PAC agents:

 represent self-contained semantic concepts on which users of the system can
act, such as spreadsheets and charts.

 Intermediate-level PAC agents:

 represent either combinations of, or relationships between, lower-level agents.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
15

Sharif University of Technology

Presentation-Abstraction-Control: Structure – Agents

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
16

Sharif University of Technology

Presentation-Abstraction-Control: Structure – Components

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
17

Sharif University of Technology

Presentation-Abstraction-Control: Dynamics – Scenario I

 Cooperation between different PAC agents when opening a new bar-chart
view of the election data.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
18

Sharif University of Technology

Presentation-Abstraction-Control: Dynamics – Scenario II

 Behavior of the system after new election data is entered.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
19

Sharif University of Technology

Presentation-Abstraction-Control: Consequences

 Separation of concerns

 Support for change and extension

 Support for multi-tasking

 Increased system complexity

 Complex control component

 Efficiency

 Applicability

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
20

Sharif University of Technology

Architectural: Adaptable Systems

 Reflection: provides a mechanism for changing structure and behavior of
software systems dynamically.

 Supports the modification of fundamental aspects, such as type structures and
function call mechanisms.

 An application is split into two parts.

 A meta level provides information about selected system properties and makes the
software self-aware.

 A base level includes the application logic; its implementation builds on the meta level.

 Microkernel: Applies to software systems that must be able to adapt to
changing system requirements.

 separates a minimal functional core from extended functionality and customer-
specific parts.

 serves as a socket for plugging in such extensions and coordinating their
collaboration.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
21

Sharif University of Technology

Adaptable Systems: Microkernel

 Applies to software systems that must be able to adapt to changing system
requirements.

 Separates a minimal functional core from extended functionality and customer-
specific parts.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
22

Sharif University of Technology

Adaptable Systems: Microkernel

 Context - The development of several applications that use similar
programming interfaces that build on the same core functionality.

 Problem - Forces are as follows:

 The application platform must cope with continuous hardware and software
evolution.

 The application platform should be portable, extensible and adaptable to allow
easy integration of emerging technologies.

 The applications in your domain need to support different, but similar,
application platforms.

 The applications may be categorized into groups that use the same functional
core in different ways: the underlying platform must emulate existing standards.

 The functional core of the application platform should be separated into:

 a component with minimal memory size, and

 services that consume as little processing power as possible.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
23

Sharif University of Technology

Microkernel: Structure – Microkernel

 Fundamental services of the application platform are encapsulated in a
Microkernel component, which

 includes functionality that enables other components running in separate
processes to communicate with each other.

 is responsible for maintaining system-wide resources such as files or processes.

 provides interfaces that enable other components to access its functionality.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
24

Sharif University of Technology

Microkernel: Structure – Servers

 Core functionality that cannot be implemented within the microkernel without

unnecessarily increasing its size or complexity is separated in Internal Servers.

 External Servers are separate processes that represent other application platforms;

they implement their own view of the underlying microkernel.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
25

Sharif University of Technology

Microkernel: Structure – Clients and Adapters

 Clients communicate with external servers by using the communication

facilities provided by the microkernel.

 Adapters represent interfaces between clients and their external servers,

allowing clients to access services of their external server in a portable way.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
26

Sharif University of Technology

Microkernel: Structure – Class Diagram

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
27

Sharif University of Technology

Microkernel: Dynamics – Scenario I

 A client calls a service of its external server

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
28

Sharif University of Technology

Microkernel: Dynamics – Scenario II

 An external server requests a service that is provided by an internal server.

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
29

Sharif University of Technology

Microkernel: Consequences

 Portability

 Flexibility and Extensibility

 Separation of policy and mechanism

 Scalability

 Reliability

 Transparency

 Performance

 Complexity of design and implementation

 Patterns in Software Engineering – Lecture 8

Department of Computer Engineering
30

Sharif University of Technology

Reference

 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

