
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 7

GoV Patterns – Architectural

Part 1

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
2

Sharif University of Technology

GoV Patterns for Software Architecture

 According to Buschmann et al.:

 A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts, and presents a
well-proven generic scheme for its solution.

 The solution scheme is specified by describing

 the constituent components

 The responsibilities and relationships of the components

 the ways in which the components collaborate.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
3

Sharif University of Technology

GoV Patterns: Pattern Schema

 Context: Design situation giving rise to a design problem

 Problem: Set of forces (requirements, constraints, and
desirable properties) repeatedly arising in the context that
need to be addressed

 Solution: Configuration to balance the forces

 Structure with components and relationships

 Run-time behavior

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
4

Sharif University of Technology

GoV Patterns: Categories

 Architectural

 Expresses a fundamental structural organization schema for software systems.

 Provides a set of predefined subsystems (or components), specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them.

 Design

 Provides a scheme for refining the subsystems or components of a software
system, or the relationships between them.

 Describes a commonly-recurring structure of communicating components that solves a
general design problem within a particular context.

 Idiom

 Low-level pattern specific to a programming language.

 Describes how to implement particular aspects of components or the relationships
between them using the features of the given language.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
5

Sharif University of Technology

Architectural Patterns: Categories

 From Mud to Structure

 Support a controlled decomposition of a system task into cooperating subtasks.

 Layers, Pipes and Filters, and Blackboard

 Distributed Systems

 Deal with the infrastructure of distributed applications.

 Broker; also Microkernel and Pipes and Filters, which only consider distribution as a
secondary concern.

 Interactive Systems

 Support the structuring of systems that feature human-computer interaction.

 Model-View-Controller and Presentation-Abstraction-Control

 Adaptable Systems

 Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

 Reflection and Microkernel

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
6

Sharif University of Technology

Architectural: From Mud to Structure

 Layers: Helps to structure applications that can be decomposed into
groups of subtasks.

 Each group of subtasks is at a particular level of abstraction.

 Pipes and Filters: Provides a structure for systems that process a stream
of data.

 Each processing step is encapsulated in a filter component.

 Data is passed through pipes between adjacent filters.

 Recombining filters allows you to build families of related systems.

 Blackboard: Useful for problems for which no deterministic solution
strategies are known.

 Several specialized subsystems assemble their knowledge to build a possibly
partial or approximate solution.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
7

Sharif University of Technology

From Mud to Structure: Layers

 Helps to structure applications that can be decomposed into groups of
subtasks in which each group of subtasks is at a particular level of
abstraction.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
8

Sharif University of Technology

From Mud to Structure: Layers

 Context - A large system that requires decomposition.

 Problem - Forces are as follows:

 Late source code changes should not ripple through the system.

 Interfaces should be stable.

 Parts of the system should be exchangeable.

 It may be necessary to build other systems at a later date with the same low-level issues
as the system you are currently designing.

 Similar responsibilities should be grouped to help understandability and maintainability.

 There is no 'standard' component granularity.

 Complex components need further decomposition.

 Crossing component boundaries may impede performance.

 The system will be built by a team of programmers, and work has to be subdivided along
clear boundaries.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
9

Sharif University of Technology

Layers: Structure

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
10

Sharif University of Technology

Layers: Dynamics

 Scenario I: Top-down communication initiated by a client.

 Scenario II: Bottom-up communication, when a chain of actions starts at
Layer 1; for example when a device driver detects input.

 Scenarios III and IV: Requests only travel through a subset of the layers.

 III: A top-level request may only go to level N-1 lf this level can satisfy the
request; e.g. when level N-1 acts as a cache.

 IV: A bottom-level request may only travel through the next few upper-level
layers.

 Scenario V: involves two stacks of N layers communicating with each
other.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
11

Sharif University of Technology

Layers: Consequences

 Reuse of layers

 Support for standardization

 Dependencies are kept local

 Exchangeability

 Cascades of changing behavior

 Lower efficiency

 Potential for unnecessary work

 Difficulty of establishing the correct granularity of layers

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
12

Sharif University of Technology

From Mud to Structure: Pipes and Filters

 Provides a structure for systems that process a stream of data. Each
processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters.

 Context - Processing data streams.

 Problem - Forces are as follows:

 Future system enhancements should be possible by exchanging processing steps or
by recombination of steps, even by users.

 Small processing steps are easier to reuse in different contexts than large ones.

 Non-adjacent processing steps do not share information.

 Different sources of input data exist.

 It should be possible to present or store final results in various ways.

 Explicit storage of intermediate results for further processing in files clutters
directories and is error-prone, if done by users.

 You may not want to rule out multi-processing the steps, for example running them
in parallel.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
13

Sharif University of Technology

Pipes and Filters: Structure – Filters and Pipes

 Filter: processing unit of the pipeline.

 Enriches, refines or transforms its input data.

 Its activity can be triggered by several events:

 subsequent pipeline element pulls output data from the filter (passive).

 The previous pipeline element pushes new input data to the filter (passive).

 Most commonly, the filter is active in a loop.

 Pipe: connection between filters.

 If two active components are joined, the pipe synchronizes them. This

synchronization is done with a first-in- first-out buffer.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
14

Sharif University of Technology

Pipes and Filters: Structure – Sources and Sinks

 The data source represents the input to the system, and provides a

sequence of data values of the same structure or type.

 Examples of such data sources are a file consisting of lines of text, or a sensor

delivering a sequence of numbers.

 The data sink collects the results from the end of the pipeline.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
15

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario I

 Push pipeline in which activity starts with the data source. Filter
activity is triggered by writing data to the passive filters.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
16

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario II

 Pull pipeline in which the control flow is started by the data sink
calling for data.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
17

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario III

 mixed push-pull pipeline with passive data source and sink.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
18

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario IV

 All filters actively pull, compute. and push data in a loop.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
19

Sharif University of Technology

Pipes and Filters: Consequences

 No intermediate files necessary, but possible

 Flexibility by filter exchange and recombination

 Reuse of filter components

 Rapid prototyping of pipelines

 Efficiency by parallel processing

 Sharing state information is expensive or inflexible

 Efficiency gain by parallel processing is often an illusion

 Data transformation overhead

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
20

Sharif University of Technology

Architectural: Distributed Systems

 Broker: Used to structure distributed software systems with decoupled
components that interact by remote service invocations.
 A broker component is responsible for coordinating communication, such as forwarding

requests, as well as for transmitting results and exceptions.

 Microkernel: Separates a minimal functional core (microkernel) from
extended functionality and customer-specific parts.
 Applies to software systems that must be able to adapt to changing system requirements.

 Microkernel systems employ a Client-Server architecture in which clients and servers run
on top of the microkernel component.

 Pipes and Filters: Provides a structure (possibly distributed) for systems
that process a stream of data.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
21

Sharif University of Technology

Distributed Systems: Broker

 Used to structure distributed software systems with decoupled components
that interact by remote service invocations.

 A broker component is responsible for coordinating communication, such as
forwarding requests, as well as for transmitting results and exceptions.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
22

Sharif University of Technology

Distributed Systems: Broker

 Context - Your environment is a distributed and possibly heterogeneous
system with independent cooperating components.

 Problem - Forces are as follows:

 Components should be able to access services provided by others through
remote, location-transparent service invocations.

 You need to exchange, add, or remove components at run-time.

 The architecture should hide system- and implementation-specific details from
the users of components and services.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
23

Sharif University of Technology

Broker: Structure – Brokers and Bridges

 Brokers are messengers that are responsible for the transmission of

 requests from clients to servers, and

 responses and exceptions back to the client.

 Bridges are optional components used for hiding implementation details

when two brokers interoperate.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
24

Sharif University of Technology

Broker: Structure – Clients and Servers

 Servers implement objects that expose their functionality through interfaces that

consist of operations and attributes.

 Clients are applications that access the services of at least one server.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
25

Sharif University of Technology

Broker: Structure – Proxies

 Proxies represent a layer between clients/servers and the broker.

 This additional layer provides transparency, in that a remote object appears to

the client/server as a local one.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
26

Sharif University of Technology

Broker: Dynamics – Scenario I

 A server registers itself with the local broker component.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
27

Sharif University of Technology

Broker: Dynamics – Scenario II

 A client sends a request to a local server.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
28

Sharif University of Technology

Broker: Dynamics – Scenario III

 interaction of different brokers via bridge components.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
29

Sharif University of Technology

Broker: Consequences

 Location Transparency

 Changeability and extensibility of components

 Portability of a Broker system

 Interoperability between different Broker systems

 Reusability

 Restricted efficiency

 Lower fault tolerance

 Testing and Debugging

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
30

Sharif University of Technology

Reference

 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

