
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 7

GoV Patterns – Architectural

Part 1

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
2

Sharif University of Technology

GoV Patterns for Software Architecture

 According to Buschmann et al.:

 A pattern for software architecture describes a particular recurring
design problem that arises in specific design contexts, and presents a
well-proven generic scheme for its solution.

 The solution scheme is specified by describing

 the constituent components

 The responsibilities and relationships of the components

 the ways in which the components collaborate.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
3

Sharif University of Technology

GoV Patterns: Pattern Schema

 Context: Design situation giving rise to a design problem

 Problem: Set of forces (requirements, constraints, and
desirable properties) repeatedly arising in the context that
need to be addressed

 Solution: Configuration to balance the forces

 Structure with components and relationships

 Run-time behavior

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
4

Sharif University of Technology

GoV Patterns: Categories

 Architectural

 Expresses a fundamental structural organization schema for software systems.

 Provides a set of predefined subsystems (or components), specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them.

 Design

 Provides a scheme for refining the subsystems or components of a software
system, or the relationships between them.

 Describes a commonly-recurring structure of communicating components that solves a
general design problem within a particular context.

 Idiom

 Low-level pattern specific to a programming language.

 Describes how to implement particular aspects of components or the relationships
between them using the features of the given language.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
5

Sharif University of Technology

Architectural Patterns: Categories

 From Mud to Structure

 Support a controlled decomposition of a system task into cooperating subtasks.

 Layers, Pipes and Filters, and Blackboard

 Distributed Systems

 Deal with the infrastructure of distributed applications.

 Broker; also Microkernel and Pipes and Filters, which only consider distribution as a
secondary concern.

 Interactive Systems

 Support the structuring of systems that feature human-computer interaction.

 Model-View-Controller and Presentation-Abstraction-Control

 Adaptable Systems

 Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

 Reflection and Microkernel

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
6

Sharif University of Technology

Architectural: From Mud to Structure

 Layers: Helps to structure applications that can be decomposed into
groups of subtasks.

 Each group of subtasks is at a particular level of abstraction.

 Pipes and Filters: Provides a structure for systems that process a stream
of data.

 Each processing step is encapsulated in a filter component.

 Data is passed through pipes between adjacent filters.

 Recombining filters allows you to build families of related systems.

 Blackboard: Useful for problems for which no deterministic solution
strategies are known.

 Several specialized subsystems assemble their knowledge to build a possibly
partial or approximate solution.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
7

Sharif University of Technology

From Mud to Structure: Layers

 Helps to structure applications that can be decomposed into groups of
subtasks in which each group of subtasks is at a particular level of
abstraction.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
8

Sharif University of Technology

From Mud to Structure: Layers

 Context - A large system that requires decomposition.

 Problem - Forces are as follows:

 Late source code changes should not ripple through the system.

 Interfaces should be stable.

 Parts of the system should be exchangeable.

 It may be necessary to build other systems at a later date with the same low-level issues
as the system you are currently designing.

 Similar responsibilities should be grouped to help understandability and maintainability.

 There is no 'standard' component granularity.

 Complex components need further decomposition.

 Crossing component boundaries may impede performance.

 The system will be built by a team of programmers, and work has to be subdivided along
clear boundaries.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
9

Sharif University of Technology

Layers: Structure

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
10

Sharif University of Technology

Layers: Dynamics

 Scenario I: Top-down communication initiated by a client.

 Scenario II: Bottom-up communication, when a chain of actions starts at
Layer 1; for example when a device driver detects input.

 Scenarios III and IV: Requests only travel through a subset of the layers.

 III: A top-level request may only go to level N-1 lf this level can satisfy the
request; e.g. when level N-1 acts as a cache.

 IV: A bottom-level request may only travel through the next few upper-level
layers.

 Scenario V: involves two stacks of N layers communicating with each
other.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
11

Sharif University of Technology

Layers: Consequences

 Reuse of layers

 Support for standardization

 Dependencies are kept local

 Exchangeability

 Cascades of changing behavior

 Lower efficiency

 Potential for unnecessary work

 Difficulty of establishing the correct granularity of layers

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
12

Sharif University of Technology

From Mud to Structure: Pipes and Filters

 Provides a structure for systems that process a stream of data. Each
processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters.

 Context - Processing data streams.

 Problem - Forces are as follows:

 Future system enhancements should be possible by exchanging processing steps or
by recombination of steps, even by users.

 Small processing steps are easier to reuse in different contexts than large ones.

 Non-adjacent processing steps do not share information.

 Different sources of input data exist.

 It should be possible to present or store final results in various ways.

 Explicit storage of intermediate results for further processing in files clutters
directories and is error-prone, if done by users.

 You may not want to rule out multi-processing the steps, for example running them
in parallel.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
13

Sharif University of Technology

Pipes and Filters: Structure – Filters and Pipes

 Filter: processing unit of the pipeline.

 Enriches, refines or transforms its input data.

 Its activity can be triggered by several events:

 subsequent pipeline element pulls output data from the filter (passive).

 The previous pipeline element pushes new input data to the filter (passive).

 Most commonly, the filter is active in a loop.

 Pipe: connection between filters.

 If two active components are joined, the pipe synchronizes them. This

synchronization is done with a first-in- first-out buffer.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
14

Sharif University of Technology

Pipes and Filters: Structure – Sources and Sinks

 The data source represents the input to the system, and provides a

sequence of data values of the same structure or type.

 Examples of such data sources are a file consisting of lines of text, or a sensor

delivering a sequence of numbers.

 The data sink collects the results from the end of the pipeline.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
15

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario I

 Push pipeline in which activity starts with the data source. Filter
activity is triggered by writing data to the passive filters.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
16

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario II

 Pull pipeline in which the control flow is started by the data sink
calling for data.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
17

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario III

 mixed push-pull pipeline with passive data source and sink.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
18

Sharif University of Technology

Pipes and Filters: Dynamics – Scenario IV

 All filters actively pull, compute. and push data in a loop.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
19

Sharif University of Technology

Pipes and Filters: Consequences

 No intermediate files necessary, but possible

 Flexibility by filter exchange and recombination

 Reuse of filter components

 Rapid prototyping of pipelines

 Efficiency by parallel processing

 Sharing state information is expensive or inflexible

 Efficiency gain by parallel processing is often an illusion

 Data transformation overhead

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
20

Sharif University of Technology

Architectural: Distributed Systems

 Broker: Used to structure distributed software systems with decoupled
components that interact by remote service invocations.
 A broker component is responsible for coordinating communication, such as forwarding

requests, as well as for transmitting results and exceptions.

 Microkernel: Separates a minimal functional core (microkernel) from
extended functionality and customer-specific parts.
 Applies to software systems that must be able to adapt to changing system requirements.

 Microkernel systems employ a Client-Server architecture in which clients and servers run
on top of the microkernel component.

 Pipes and Filters: Provides a structure (possibly distributed) for systems
that process a stream of data.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
21

Sharif University of Technology

Distributed Systems: Broker

 Used to structure distributed software systems with decoupled components
that interact by remote service invocations.

 A broker component is responsible for coordinating communication, such as
forwarding requests, as well as for transmitting results and exceptions.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
22

Sharif University of Technology

Distributed Systems: Broker

 Context - Your environment is a distributed and possibly heterogeneous
system with independent cooperating components.

 Problem - Forces are as follows:

 Components should be able to access services provided by others through
remote, location-transparent service invocations.

 You need to exchange, add, or remove components at run-time.

 The architecture should hide system- and implementation-specific details from
the users of components and services.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
23

Sharif University of Technology

Broker: Structure – Brokers and Bridges

 Brokers are messengers that are responsible for the transmission of

 requests from clients to servers, and

 responses and exceptions back to the client.

 Bridges are optional components used for hiding implementation details

when two brokers interoperate.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
24

Sharif University of Technology

Broker: Structure – Clients and Servers

 Servers implement objects that expose their functionality through interfaces that

consist of operations and attributes.

 Clients are applications that access the services of at least one server.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
25

Sharif University of Technology

Broker: Structure – Proxies

 Proxies represent a layer between clients/servers and the broker.

 This additional layer provides transparency, in that a remote object appears to

the client/server as a local one.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
26

Sharif University of Technology

Broker: Dynamics – Scenario I

 A server registers itself with the local broker component.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
27

Sharif University of Technology

Broker: Dynamics – Scenario II

 A client sends a request to a local server.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
28

Sharif University of Technology

Broker: Dynamics – Scenario III

 interaction of different brokers via bridge components.

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
29

Sharif University of Technology

Broker: Consequences

 Location Transparency

 Changeability and extensibility of components

 Portability of a Broker system

 Interoperability between different Broker systems

 Reusability

 Restricted efficiency

 Lower fault tolerance

 Testing and Debugging

Patterns in Software Engineering – Lecture 7

Department of Computer Engineering
30

Sharif University of Technology

Reference

 Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

