Patterns in
Software Engineering

| ecturer: Raman Ramsin

Lecture 7

GoV Patterns — Architectural
Part 1

1 Sharif University of Technology

Department of Computer Engineering

-
GoV Patterns for Software Architecture

m According to Buschmann et al.:

A pattern for software architecture describes a particular recurring

design problem that arises in specific design contexts, and presents a
well-proven generic scheme for its solution.

The solution scheme is specified by describing
= the constituent components
= The responsibilities and relationships of the components
= the ways in which the components collaborate.

Department of Computer Engineering) Sharif University of Technology

GoV Patterns: Pattern Schema

m Context: Design situation giving rise to a design problem

m Problem: Set of forces (requirements, constraints, and

desirable properties) repeatedly arising in the context that
need to be addressed

m Solution: Configuration to balance the forces
Structure with components and relationships

Run-time behavior

Department of Computer Engineering Sharif University of Technology

-
GoV Patterns: Categories

m Architectural

Expresses a fundamental structural organization schema for software systems.

m Provides a set of predefined subsystems (or components), specifies their
responsibilities, and includes rules and guidelines for organizing the relationships
between them.

m Design

Provides a scheme for refining the subsystems or components of a software
system, or the relationships between them.

m Describes a commonly-recurring structure of communicating components that solves a
general design problem within a particular context.

m Idiom

Low-level pattern specific to a programming language.

m Describes how to implement particular aspects of components or the relationships
between them using the features of the given language.

Department of Computer Engineering Sharif University of Technology

Architectural Patterns: Categories

m From Mud to Structure

Support a controlled decomposition of a system task into cooperating subtasks.
Layers, Pipes and Filters, and Blackboard

m Distributed Systems
Deal with the infrastructure of distributed applications.

Broker; also Microkernel and Pipes and Filters, which only consider distribution as a
secondary concern.

m Interactive Systems

Support the structuring of systems that feature human-computer interaction.
Model-View-Controller and Presentation-Abstraction-Contro/

m Adaptable Systems

Support extension of applications and their adaptation to evolving technology and
changing functional requirements.

Reflection and Microkernel/

Department of Computer Engineering Sharif University of Technology

-
Architectural: From Mud to Structure

m Layers: Helps to structure applications that can be decomposed into
groups of subtasks.

Each group of subtasks is at a particular level of abstraction.

m Pipes and Filters: Provides a structure for systems that process a stream
of data.

Each processing step is encapsulated in a filter component.
Data is passed through pipes between adjacent filters.
Recombining filters allows you to build families of related systems.

m Blackboard: Useful for problems for which no deterministic solution
strategies are known.

Several specialized subsystems assemble their knowledge to build a possibly
partial or approximate solution.

Department of Computer Engineering Sharif University of Technology

Patterns in Software Engineering — Lecture

From Mud to Structure: Layers

m Helps to structure applications that can be decomposed into groups of
subtasks in which each group of subtasks is at a particular level of

abstraction.

Application

Presentation

|

Session

Transport

T

Network

I

Data Link

Physical

Department of Computer Engineering

Layer 7

Layer 6

Layer 5

Layer 4

Layer 3

Layer 2

Layer 1

Provides miscellaneous protocols
for common activities

Structures information
and attaches semantics

Provides dialog control and
synchronization facilities

Breaks messages into packets
and guarantees delivery

Selects a route
from sender to receiver

Detects and corrects errors
in bit sequences

Transmits bits: velocity,
bit-code, connection, etc.

Sharif University of Technology

From Mud to Structure: Layers

m Context - A large system that requires decomposition.

m Problem - Forces are as follows:

Late source code changes should not ripple through the system.
Interfaces should be stable.
Parts of the system should be exchangeable.

It may be necessary to build other systems at a later date with the same low-level issues
as the system you are currently designing.

Similar responsibilities should be grouped to help understandability and maintainability.
There is no 'standard' component granularity.

Complex components need further decomposition.

Crossing component boundaries may impede performance.

The system will be built by a team of programmers, and work has to be subdivided along
clear boundaries.

Department of Computer Engineering Sharif University of Technology

Layers: Structure

Class
Layer J

Responsibility
* Provides services
used by Layer J+1.

* Delegates subtasks
to Layer J-1,

Collaborator
* LayerdJ-1

Client

uses

Layer N

Layer N-1

Layer 1

highest level of abstraction

lowest level of abstraction

Component_3.1 Layer 3 Component_3.2 Component_3.3
|]
£t 1
uses
Component_2.1 Layer 2 Component_2.2 Component_2.3
Component_1.1 Layer 1 Component_1.2 Component_1.3

Department of Computer Engineering

Sharif University of Technology

Layers: Dynamics

m Scenario I: Top-down communication initiated by a client.

m Scenario II: Bottom-up communication, when a chain of actions starts at
Layer 1; for example when a device driver detects input.

m Scenarios III and IV: Requests only travel through a subset of the layers.

III: A top-level request may only go to level N-1 If this level can satisfy the
request; e.g. when level N-1 acts as a cache.

IV: A bottom-level request may only travel through the next few upper-level
layers.

m Scenario V: involves two stacks of N layers communicating with each
other.

Department of Computer Engineering 10 Sharif University of Technology

-
Layers: Consequences

v Reuse of layers
v Support for standardization
v Dependencies are kept local
v Exchangeability

x Cascades of changing behavior
x Lower efficiency
x Potential for unnecessary work

x Difficulty of establishing the correct granularity of layers

Department of Computer Engineering Sharif University of Technology

11

-
From Mud to Structure: Pipes and Filters

m Provides a structure for systems that process a stream of data. Each
processing step is encapsulated in a filter component. Data is passed
through pipes between adjacent filters.

m Context - Processing data streams.
m Problem - Forces are as follows:

Future system enhancements should be possible by exchanging processing steps or
by recombination of steps, even by users.

Small processing steps are easier to reuse in different contexts than large ones.
Non-adjacent processing steps do not share information.

Different sources of input data exist.

It should be possible to present or store final results in various ways.

Explicit storage of intermediate results for further processing in files clutters
directories and is error-prone, if done by users.

You may not want to rule out multi-processing the steps, for example running them
in parallel.

Department of Computer Engineering Sharif University of Technology

12

-
Pipes and Filters: Structure - Filters and Pipes

m Filter: processing unit of the pipeline.
0 Enriches, refines or transforms its input data.

0O Its activity can be triggered by several events:
m subsequent pipeline element pulls output data from the filter (passive).
m The previous pipeline element pushes new input data to the filter (passive).
m Most commonly, the filter is active in a loop.

m Pipe: connection between filters.

O If two active components are joined, the pipe synchronizes them. This
synchronization is done with a first-in- first-out buffer.

Class Collaborators Class Collaborators

Filter * Pipe Pipe ®* Data Source

— P e Data Sink

Responsibility Responsibility e Filter
* Gets input data. * Transfers data.
* Performs a function ¢ Buffers data.

on its 1nput data. e Synchronizes
* Supplies output active neighbors.

data.

Department of Computer Engineering Sharif University of Technology

13

-
Pipes and Filters: Structure — Sources and Sinks

m The data source represents the input to the system, and provides a
sequence of data values of the same structure or type.

O Examples of such data sources are a file consisting of lines of text, or a sensor

delivering a sequence of numbers.

m The data sink collects the results from the end of the pipeline.

Class
Data Source

Responstibility
¢ Delivers input to

processing
pipeline.

Collaborators
* Pipe

Class
Data Sink

Responsibility
* Consumes output.

Collaborators
* Pipe

Department of Computer Engineering

Sharif University of Technology

Pipes and Filters: Dynamics — Scenatrio |
m Push pipeline in which activity starts with the data source. Filter
activity is triggered by writing data to the passive filters.
Data Source Filterl Filter2 Data Sink
push push push
A
data| write
- fl
e
: data| Write
f2
]
:I data write
= - -
o |
Department of Computer Engineering Sharif University of Technology

15

-
Pipes and Filters: Dynamics — Scenatrio |l

m Pull pipeline in which the control flow is started by the data sink
calling for data.

Data Source Filterl Filter2 Data Sink
pull pull pull
read I
read had
read g
— — f1
data ; |
= f2
data ; |
— -
I data
1444

Department of Computer Engineering

16

Sharif University of Technology

Pipes and Filters: Dynamics — Scenatrio |l

m mixed push-pull pipeline with passive data source and sink.

Department of Computer Engineering

17

Data Source Filterl Filter2 Data Sink
pull pull/push
read A
read -
-l dat — f1
]
- f2
data
; I write
data
-l
AN

Sharif University of Technology

Pipes and Filters: Dynamics — Scenario IV

m All filters actively pull, compute. and push data in a loop.

Department of Computer Engineering

18

Data Source Filterl Buffering Filter2 Data Sink
pull/push Pipe pull/push
oy W
read
read i)
> fl
data ; |
read #:I data|write
~ data " - [——' - f2
data :'
:'data|write
- write
read data
-
- “__l data|
N

Sharif University of Technology

Pipes and Filters: Consequences

No intermediate files necessary, but possible
Flexibility by filter exchange and recombination
Reuse of filter components

Rapid prototyping of pipelines

X X X

Efficiency by parallel processing

X

Sharing state information is expensive or inflexible
x Efficiency gain by parallel processing is often an illusion

x Data transformation overhead

Department of Computer Engineering 19 Sharif University of Technology

Architectural: Distributed Systems

m Broker: Used to structure distributed software systems with decoupled
components that interact by remote service invocations.

A broker component is responsible for coordinating communication, such as forwarding
requests, as well as for transmitting results and exceptions.

m Microkernel: Separates a minimal functional core (microkernel) from
extended functionality and customer-specific parts.
Applies to software systems that must be able to adapt to changing system requirements.

Microkernel systems employ a Client-Server architecture in which clients and servers run
on top of the microkernel component.

m Pipes and Filters: Provides a structure (possibly distributed) for systems
that process a stream of data.

Department of Computer Engineering Sharif University of Technology

20

-
Distributed Systems: Broker

m Used to structure distributed software systems with decoupled components
that interact by remote service invocations.

A broker component is responsible for coordinating communication, such as
forwarding requests, as well as for transmitting results and exceptions.

Town Hall
ﬁ)hWell City Tourist Information \
11/11/96 ’
BMRSS International
Hotels City Map Server
Broker
Restaurants e
Public Transport - > ("//E i% - p-| getCompleteMap(...)
Sightseeing currentPosition|...)
Events S showConnection{...)
showPosition(...)
CityMap.getCompleteMap(..) locateBogHog(...)
Choose from menu

K COMPUTER-TERMINAL NowWhat Space Center /

Department of Computer Engineering 71 Sharif University of Technology

-
Distributed Systems: Broker

m Context - Your environment is a distributed and possibly heterogeneous
system with independent cooperating components.

m Problem - Forces are as follows:

Components should be able to access services provided by others through
remote, location-transparent service invocations.

You need to exchange, add, or remove components at run-time.

The architecture should hide system- and implementation-specific details from
the users of components and services.

Department of Computer Engineering 29 Sharif University of Technology

-
Broker: Structure - Brokers and Bridges

m Brokers are messengers that are responsible for the transmission of
requests from clients to servers, and
responses and exceptions back to the client.

m Bridges are optional components used for hiding implementation details
when two brokers interoperate.

Error recovery.

Interoperates with
other brokers
through bridges.

Locates servers.

Department of Computer Engineering

23

the local broker
and the bridge of a
remote broker.

E——

Class Collaborators Class Collaborators
Broker e Client Bridge » Broker
— s Server — ® Bn‘_dge
Responsibility * Client-side Proxy Responsibility
* (Un-)registers * Server-side Proxy * Encapsulates net-
SEIVErs. * Bridge work-specific func-
* Offers APIs. tionality
* Transfl '
mg‘;}fagg:- e Mediates between

Sharif University of Technology

Broker: Structure - Clients and Servers

m Servers implement objects that expose their functionality through interfaces that
consist of operations and attributes.

m Clients are applications that access the services of at least one server.

Class Collaborators Class Collaborators
Client * Client-side Server * Server-side
Proxy —— Proxy
Responsibility e Broker Responsibility e Broker
* Implements user * Implements
functionality. services.
* Sends requests to * Registers itself with
servers through a the local broker.
client-side proxy. * Sends responses
and exceptions
back to the client
through a server-
side proxy.

Department of Computer Engineering Sharif University of Technology

24

Patterns in Software Engineering — Lecture

Broker: Structure - Proxies

m Proxies represent a layer between clients/servers and the broker.
O This additional layer provides transparency, in that a remote object appears to

the client/server as a local one.

Class
Client-side Proxy

Responsibility

e Encapsulates sys-
tem-specific func-
tionality.

* Mediates between

the client and the
broker.

Collaborators
e Client
* Broker

Class
Server-side Proxy

Responsibility

e Calls services with-
in the server.

* Encapsulates sys-
tem-specific func-
tionality.

e Mediates between
the server and the
broker.

Collaborators
¢ Server

* Broker

Department of Computer Engineering

Sharif University of Technology

-
Broker: Dynamics — Scenatrio |

m A server registers itself with the local broker component.

Server Broker

main
start —P event

; I initialize loop
]

ist ce
register_servi | update_repository

]
-]

acknowledgment
<}

enter_main_loop
possible
process
boundary

Department of Computer Engineering 26 Sharif University of Technology

-
Broker: Dynamics — Scenario |l

m A client sends a request to a local server.

Client Client-side Broker Server-side Server
Proxy Proxy
'Vl"" call_server \
send_request pack_data

forward_request

; find_server

call_service

| unpack_data

rumn_service

pack_data
forward_response [E
l—N—— |
find_client
return
unpaek_aata

result | possible possible
process rocess

boundary goundary

Department of Computer Engineering Sharif University of Technology

27

-
Broker: Dynamics — Scenatrio Il

m interaction of different brokers via bridge components.

Broker A Bridge A Bridge B Broker B

> find_server
forward
request :I

forward_message

pack_data

]
]

transmit_message

unpack_data

; ;orward_request .

find_server

possible
process
boundary

Department of Computer Engineering Sharif University of Technology

28

Broker: Consequences

Location Transparency

Portability of a Broker system

AN N NN

Reusability

x

Restricted efficiency
x Lower fault tolerance

x Testing and Debugging

Department of Computer Engineering

29

Changeability and extensibility of components

Interoperability between different Broker systems

Sharif University of Technology

Patterns in Software Engineering — Lecture

Reference

m Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., and
Stal, M., Pattern-Oriented Software Architecture: A System of
Patterns, Vol. 1. Wiley, 1996.

Department of Computer Engineering 30 Sharif University of Technology

