
Department of Computer Engineering
1

Sharif University of Technology

Patterns in 

Software Engineering

Lecturer: Raman Ramsin

Lecture 5

GoF Design Patterns – Behavioral

Part 2



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
2

Sharif University of Technology

Memento

 Intent:

 Without violating encapsulation, capture and externalize an 
object's internal state so that the object can be restored to 
this state later.

 Applicability:

 Use the Memento pattern when

 a snapshot of (some portion of) an object's state must 
be saved so that it can be restored to that state later, 
and

 a direct interface to obtaining the state would expose 
implementation details and break the object's 
encapsulation.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
3

Sharif University of Technology

Memento: Structure



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
4

Sharif University of Technology

Memento: Collaboration



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
5

Sharif University of Technology

Memento: Consequences

 Preserving encapsulation boundaries. The pattern shields other 
objects from potentially complex Originator internals.

 It simplifies Originator. Having clients manage the state they ask for 
simplifies Originator and keeps clients from having to notify 
originators when they're done.

 Using mementos might be expensive. Mementos might incur 
considerable overhead if Originator must copy large amounts of 
information to store in the memento or if clients create and return 
many mementos.

 Defining narrow and wide interfaces. It may be difficult in some 
languages to ensure that only the originator can access the 
memento's state.

 Hidden costs in caring for mementos. 



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
6

Sharif University of Technology

Observer

 Intent:
 Define a one-to-many dependency between objects so that 

when one object changes state, all its dependents are notified 
and updated automatically.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
7

Sharif University of Technology

Observer: Applicability

 Use the Observer pattern when

 an abstraction has two aspects, one dependent on the other. 
Encapsulating these aspects in separate objects lets you vary 
and reuse them independently.

 a change to one object requires changing others, and you don't 
know how many objects need to be changed.

 an object should be able to notify other objects without making 
assumptions about who these objects are. In other words, you 
don't want these objects tightly coupled.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
8

Sharif University of Technology

Observer: Structure



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
9

Sharif University of Technology

Observer: Collaboration



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
10

Sharif University of Technology

Observer: Consequences

 Abstract coupling between Subject and Observer.

 Support for broadcast communication. The notification is 
broadcast automatically to all interested objects that 
subscribed to it.

 Unexpected updates. Because observers have no knowledge 
of each other's presence, they can be blind to the ultimate 
cost of changing the subject. 

 A seemingly innocuous operation on the subject may cause a 
cascade of updates to observers and their dependent objects. 



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
11

Sharif University of Technology

State

 Intent:

 Allow an object to alter its behavior when its internal state 
changes. The object will appear to change its class.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
12

Sharif University of Technology

State: Applicability

 Use the State pattern when

 An object's behavior depends on its state, and it 
must change its behavior at run-time depending on 
that state.

 Operations have large, multipart conditional 
statements that depend on the object's state.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
13

Sharif University of Technology

State: Structure



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
14

Sharif University of Technology

State: Consequences

 It localizes state-specific behavior and partitions behavior 
for different states. New states and transitions can be 
added easily by defining new subclasses.

 It makes state transitions explicit.

 State objects can be shared.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
15

Sharif University of Technology

Strategy

 Intent:
 Define a family of algorithms, encapsulate each one, and make 

them interchangeable. Strategy lets the algorithm vary 
independently from clients that use it.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
16

Sharif University of Technology

Strategy: Applicability

 Use the Strategy pattern when

 many related classes differ only in their behavior. Strategies 
provide a way to configure a class with one of many behaviors.

 you need different variants of an algorithm. For example, you 
might define algorithms reflecting different space/time trade-
offs. 

 an algorithm uses data that clients shouldn't know about. Use 
the Strategy pattern to avoid exposing complex, algorithm-
specific data structures.

 a class defines many behaviors, and these appear as multiple 
conditional statements in its operations. 



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
17

Sharif University of Technology

Strategy: Structure



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
18

Sharif University of Technology

Strategy: Consequences

 Families of related algorithms.

 An alternative to subclassing.

 Strategies eliminate conditional statements.

 A choice of implementations. Strategies can provide different 
implementations of the same behavior. The client can choose 
among strategies with different time and space trade-offs.

 Clients must be aware of different Strategies.

 Communication overhead between Strategy and Context.

 Increased number of objects.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
19

Sharif University of Technology

Visitor

 Intent:
 Represent an operation to be performed on the elements of an object 

structure; lets you define a new operation without changing the 
classes of the elements on which it operates.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
20

Sharif University of Technology

Visitor: Applicability

 Use the Visitor pattern when

 an object structure contains many classes of objects with 
differing interfaces, and you want to perform operations 
on these objects that depend on their concrete classes.

 many distinct and unrelated operations need to be 
performed on objects in an object structure, and you 
want to avoid "polluting" their classes with these 
operations. 

 the classes defining the object structure rarely change, 
but you often want to define new operations over the 
structure. 



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
21

Sharif University of Technology

Visitor: Structure



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
22

Sharif University of Technology

Visitor: Collaborations



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
23

Sharif University of Technology

Visitor: Consequences

 Visitor makes adding new operations easy.

 A visitor gathers related operations and separates 
unrelated ones.

 Adding new ConcreteElement classes is hard.

 Breaking encapsulation. The pattern often forces you to 
provide public operations that access an element's 
internal state, which may compromise its encapsulation.



Patterns in Software Engineering – Lecture 5

Department of Computer Engineering
24

Sharif University of Technology

Reference

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design 
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.


