
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 4

GoF Design Patterns – Behavioral

Part 1



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
2

Sharif University of Technology

GoF Behavioral Patterns – Class 

 Class

 Interpreter: Given a language, define a representation for its 
grammar along with an interpreter that uses the representation 
to interpret sentences in the language.

 Template Method: Define the skeleton of an algorithm in an 
operation, deferring some steps to subclasses; lets subclasses 
redefine certain steps of an algorithm without changing the 
algorithm's structure.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
3

Sharif University of Technology

GoF Behavioral Patterns – Object

 Object

 Chain of Responsibility: Avoid coupling the sender of a 
request to its receiver by giving more than one object a chance 
to handle the request. Chain the receiving objects and pass the 
request along the chain until an object handles it.

 Command: Encapsulate a request as an object, thereby 
letting you parameterize clients with different requests, queue 
or log requests, and support undoable operations.

 Iterator: Provide a way to access the elements of an 
aggregate object sequentially without exposing its underlying 
representation.

 Mediator: Define an object that encapsulates how a set of 
objects interact; promotes loose coupling by keeping objects 
from referring to each other explicitly.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
4

Sharif University of Technology

GoF Behavioral Patterns – Object (Contd.)

 Object (Contd.)

 Memento: Without violating encapsulation, capture and 
externalize an object's internal state so that the object can be 
restored to this state later.

 Observer: Define a one-to-many dependency between objects 
so that when one object changes state, all its dependents are 
notified and updated automatically.

 State: Allow an object to alter its behavior when its internal 
state changes. The object will appear to change its class.

 Strategy: Define a family of algorithms, encapsulate each one, 
and make them interchangeable; lets the algorithm vary 
independently from clients that use it.

 Visitor: Represent an operation to be performed on the 
elements of an object structure; lets you define a new 
operation without changing the classes of the elements.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
5

Sharif University of Technology

Chain of Responsibility

 Intent:
 Avoid coupling the sender of a request to its receiver by giving more 

than one object a chance to handle the request. Chain the receiving 
objects and pass the request along the chain until an object handles it.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
6

Sharif University of Technology

Chain of Responsibility: Class Hierarchy



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
7

Sharif University of Technology

Chain of Responsibility: Applicability

 Use the Chain of Responsibility pattern when

 more than one object may handle a request, and the 
handler isn't known a priori. The handler should be 
ascertained automatically.

 you want to issue a request to one of several objects 
without specifying the receiver explicitly.

 the set of objects that can handle a request should 
be specified dynamically.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
8

Sharif University of Technology

Chain of Responsibility: Structure



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
9

Sharif University of Technology

Chain of Responsibility: Consequences

 Reduced coupling.

 Added flexibility in assigning responsibilities to objects.

 Receipt isn't guaranteed.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
10

Sharif University of Technology

Command

 Intent:
 Encapsulate a request as an object, thereby letting you parameterize 

clients with different requests, queue or log requests, and support 
undoable operations.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
11

Sharif University of Technology

Command: Examples



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
12

Sharif University of Technology

Command: Macro-Command



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
13

Sharif University of Technology

Command: Applicability

 Use the Command pattern when you want to

 parameterize objects by an action to perform.

 specify, queue, and execute requests at different times.

 support undo. The Command's Execute operation can store 
state for reversing its effects in the command itself. The 
Command interface must have an added Unexecute operation 
that reverses the effects of a previous Execute.

 support logging changes so that they can be reapplied in case 
of a system crash (by augmenting the Command interface with 
load and store operations).

 structure a system around high-level operations built on 
primitives operations (based on the commands' common 
interface).



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
14

Sharif University of Technology

Command: Structure



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
15

Sharif University of Technology

Command: Collaboration



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
16

Sharif University of Technology

Command: Consequences

 Command decouples the object that invokes the 
operation from the one that knows how to perform it.

 Commands are first-class objects. They can be 
manipulated and extended like any other object.

 You can assemble commands into a composite 
command.

 It's easy to add new Commands, because you don't 
have to change existing classes.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
17

Sharif University of Technology

Iterator

 Intent:
 Provide a way to access the elements of an aggregate object 

sequentially without exposing its underlying representation.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
18

Sharif University of Technology

Iterator: Example



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
19

Sharif University of Technology

Iterator: Applicability

 Use the Iterator pattern

 to access an aggregate object's contents without exposing its 
internal representation.

 to support multiple traversals of aggregate objects.

 to provide a uniform interface for traversing different 
aggregate structures (that is, to support polymorphic iteration).



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
20

Sharif University of Technology

Iterator: Structure



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
21

Sharif University of Technology

Iterator: Consequences

 It supports variations in the traversal of an aggregate.

 Iterators simplify the Aggregate interface. Iterator's 
traversal interface obviates the need for a similar interface 
in Aggregate, thereby simplifying its interface.

 More than one traversal can be pending on an aggregate. 
You can have more than one traversal in progress at 
once.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
22

Sharif University of Technology

Mediator

 Intent:
 Define an object that encapsulates how a set of objects interact: 

promotes loose coupling by keeping objects from referring to each 
other explicitly, and lets you vary their interaction independently.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
23

Sharif University of Technology

Mediator: Typical Collaboration and Class Hierarchy



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
24

Sharif University of Technology

Mediator: Applicability

 Use the Mediator pattern when

 a set of objects communicate in well-defined but 
complex ways. The resulting interdependencies are 
unstructured and difficult to understand.

 reusing an object is difficult because it refers to and 
communicates with many other objects.

 a behavior that's distributed between several classes 
should be customizable without a lot of subclassing.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
25

Sharif University of Technology

Mediator: Structure



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
26

Sharif University of Technology

Mediator: Consequences

 It limits subclassing. A mediator localizes behavior that otherwise 
would be distributed among several objects. Changing this behavior 
requires subclassing Mediator only.

 It decouples colleagues. A mediator promotes loose coupling 
between colleagues.

 It simplifies object protocols.

 It abstracts how objects cooperate. Making mediation an 
independent concept and encapsulating it in an object lets you 
focus on how objects interact apart from their individual behavior.

 It centralizes control. The Mediator pattern trades complexity of 
interaction for complexity in the mediator.



Patterns in Software Engineering – Lecture 4

Department of Computer Engineering
27

Sharif University of Technology

Reference

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design 
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.


