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u
GoF Structural Patterns

m Class/Object

Adapter: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

m Object

Bridge: Decouple an abstraction from its implementation so that the
two can vary independently.

Composite: Compose objects into tree structures to represent whole-
part hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically.

Facade: Provide a unified interface to a set of interfaces in a
subsystem.

Flyweight: Use sharing to support large numbers of fine-grained
objects efficiently.

Proxy: Provide a surrogate or placeholder for another object to
control access to it.
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Adapter

m Intent:

Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.
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E
Adapter: Applicability

m Use the Adapter pattern when

you want to use an existing class, and its interface does not match the
one you need.

you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have
compatible interfaces.

(object adapter only) you need to use several existing subclasses, but
it's impractical to adapt their interface by subclassing every one. An
object adapter can adapt the interface of its parent class.
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Adapter (Class): Structure
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Adapter (Object): Structure
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Adapter (Class): Consequences

v’ lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

v Introduces only one object, and no additional pointer indirection is
needed to get to the adaptee.

x gdapts Adaptee to Target by committing to a concrete Adapter
class. As a consequence, a class adapter won't work when we want
to adapt a class and all its subclasses.
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E
Adapter (Object). Conseguences

v lets a 5/’(7]7‘7/9 Adapter work with many Adaptees—that is, the Adaptee
itself and all of its subclasses (if any). The Adapter can also add
functionality to all Adaptees at once.

x makes It harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass rather

than the Adaptee itself.
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Bridge

m Intent:

Decouple an abstraction from its implementation so that the two can
vary independently.
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Bridge: Applicability

m Use the Bridge pattern when

you want to avoid a permanent binding between an abstraction
and its implementation; for example, when the implementation
must be selected or switched at run-time.

both the abstractions and their implementations should be
extensible by subclassing; combine different abstractions and
implementations and extend them independently.

changes in the implementation of an abstraction should have
no impact on clients; that is, their code should not have to be
recompiled.

(C++? you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is
visible in the class interface.

you want to share an implementation among multiple objects
and this fact should be hidden from the client.
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Bridge: Structure
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E
Bridge: Conseqguences

v’ Decoupling interface and implementation. An implementation is not
bound permanently to an interface.

The implementation of an abstraction can be configured at run-
time.

It's even possible for an object to change its implementation at
run-time.

v Improved extensibility. You can extend the Abstraction and
Implementor hierarchies independently.

v’ Hiding implementation details from clients. You can shield clients
from implementation details.
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E
Composite

m Intent:

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.
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E
Composite: Applicability

m Use the Composite pattern when

you want to represent whole-part- hierarchies of objects.

you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat
all objects in the composite structure uniformly.

Department of Computer Engineering Sharif University of Technology

14



Patterns in Software Engineering — Lecture

Composite: Structure
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Composite: Typical Object Structure
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E
Composite: Conseguences

v’ wherever client code expects a primitive object, it can also take a
composite object.

v'makes the client simple. Clients can treat composite structures and
individual objects uniformly, and this simplifies their code.

v’ makes It easier to add new kinds of components. Clients don't have
to be changed for new Component classes.

x can make your design overly general. It makes it harder to restrict
the components of a composite.

If you want a composite to have only certain components, you can't
rely on the type system to enforce those constraints for you. You'll
have to use run-time checks instead.
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Decorator

m Intent:

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.
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Decorator: Class Hierarchy
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E
Decorator: Applicability

m Use the Decorator pattern

to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

for responsibilities that can be withdrawn.

when extension by subclassing is impractical. Sometimes a
large number of independent extensions are possible and
would produce an explosion of subclasses.
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Decorator: Structure
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Decorator: Consequences

v’ More flexibility than static inheritance.

v’ Avoids feature-laden classes high up in the hierarchy.

x A decorator and its component aren't identical.

x [ots of [ittle objects.
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Facade

m Intent:

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the
subsystem easier to use.
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Facade: Class Hierarchy
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E
Facade: Applicability

m Use the Facade pattern when

you want to provide a simple interface to a complex
subsystem.

there are many dependencies between clients and the
implementation classes of an abstraction.

you want to layer your subsystems. Use a facade to define an
entry point to each subsystem level.
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Facade: Structure

Facade
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Facade: Consequences

v’ It shields clients from subsystem components, thereby
reaucing the number of objects that clients deal with,
making the subsystem easier to use.

v’ It promotes weak coupling between the subsystem and
its clients.

v’ It doesn’t prevent applications from using subsystem
classes If they need to. Thus you can choose between
ease of use and generality.
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Flyweight

m Intent:

Use sharing to support large numbers of fine-grained objects
efficiently.
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Flyweight: Class Hierarchy
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E
Flyweight: Applicability

m Use the Flyweight pattern when

An application uses a large number of objects.
Storage costs are high because of the sheer quantity of objects.
Most object state can be made extrinsic.

Many groups of objects may be replaced by relatively few
shared objects once extrinsic state is removed.

The application doesn't depend on object identity. Since
flyweight objects may be shared, identity tests will return true
for conceptually distinct objects.
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Flyweight: Structure
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Flyweight: Typical Object Structure
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E
Flyweight: Consequences

v’ Saves storage.

x  May introduce run-time costs associated with
transferring, finding, and/or computing extrinsic state,
especially if it was formerly stored as intrinsic state.
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R
Proxy

m Intent:
Provide a surrogate or placeholder for another object to control
access to it.
( aTextDocument 0 animageProxy 1
kimage * S anlmage W
ileName w—-- - - B — ]

in memory on disk
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Proxy: Class Hierarchy
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Proxy: Applicability

m Use the Proxy pattern when a surrogate is needed:

Remote proxy: provides a local representative for an object in a
different address space.

Virtual proxy: creates expensive objects on demand.
Protection proxy: controls access to the original object.

Smart reference: a replacement for a bare pointer that performs
additional actions when an object is accessed:

m counting the number of references to the real object so that
it can be freed when there are no more references.

» loading a persistent object into memory when it's first
referenced.

m  checking that the real object is locked before it's accessed to
ensure that no other object can change it.
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Proxy: Structure

Patterns in Software Engineering — Lecture
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Proxy: Consequences

v’ Introduces a level of indirection when accessing an
object. The additional indirection has many uses,
depending on the kind of proxy:

A remote proxy can hide the fact that an object resides in a
different address space.

A virtual proxy can perform optimizations such as creating an
object on demand.

Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.
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