
Department of Computer Engineering
1

Sharif University of Technology

Patterns in

Software Engineering

Lecturer: Raman Ramsin

Lecture 3

GoF Design Patterns – Structural



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
2

Sharif University of Technology

GoF Structural Patterns

 Class/Object

 Adapter: Convert the interface of a class into another interface 
clients expect. Adapter lets classes work together that couldn't 
otherwise because of incompatible interfaces.

 Object

 Bridge: Decouple an abstraction from its implementation so that the 
two can vary independently.

 Composite: Compose objects into tree structures to represent whole-
part hierarchies. Composite lets clients treat individual objects and 
compositions of objects uniformly.

 Decorator: Attach additional responsibilities to an object dynamically. 

 Façade: Provide a unified interface to a set of interfaces in a 
subsystem. 

 Flyweight: Use sharing to support large numbers of fine-grained 
objects efficiently.

 Proxy: Provide a surrogate or placeholder for another object to 
control access to it.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
3

Sharif University of Technology

Adapter

 Intent:
 Convert the interface of a class into another interface clients expect. 

Adapter lets classes work together that couldn't otherwise because of 
incompatible interfaces.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
4

Sharif University of Technology

Adapter: Applicability

 Use the Adapter pattern when

 you want to use an existing class, and its interface does not match the 
one you need.

 you want to create a reusable class that cooperates with unrelated or 
unforeseen classes, that is, classes that don't necessarily have 
compatible interfaces.

 (object adapter only) you need to use several existing subclasses, but 
it's impractical to adapt their interface by subclassing every one. An 
object adapter can adapt the interface of its parent class.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
5

Sharif University of Technology

Adapter (Class): Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
6

Sharif University of Technology

Adapter (Object): Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
7

Sharif University of Technology

Adapter (Class): Consequences

 lets Adapter override some of Adaptee's behavior, since Adapter is a 
subclass of Adaptee.

 introduces only one object, and no additional pointer indirection is 
needed to get to the adaptee.

 adapts Adaptee to Target by committing to a concrete Adapter 
class. As a consequence, a class adapter won't work when we want 
to adapt a class and all its subclasses.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
8

Sharif University of Technology

Adapter (Object): Consequences

 lets a single Adapter work with many Adaptees—that is, the Adaptee 
itself and all of its subclasses (if any). The Adapter can also add 
functionality to all Adaptees at once.

 makes it harder to override Adaptee behavior. It will require 
subclassing Adaptee and making Adapter refer to the subclass rather 
than the Adaptee itself. 



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
9

Sharif University of Technology

Bridge

 Intent:
 Decouple an abstraction from its implementation so that the two can 

vary independently.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
10

Sharif University of Technology

Bridge: Applicability

 Use the Bridge pattern when

 you want to avoid a permanent binding between an abstraction 
and its implementation; for example, when the implementation 
must be selected or switched at run-time.

 both the abstractions and their implementations should be 
extensible by subclassing; combine different abstractions and 
implementations and extend them independently.

 changes in the implementation of an abstraction should have 
no impact on clients; that is, their code should not have to be 
recompiled.

 (C++) you want to hide the implementation of an abstraction 
completely from clients. In C++ the representation of a class is 
visible in the class interface.

 you want to share an implementation among multiple objects 
and this fact should be hidden from the client. 



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
11

Sharif University of Technology

Bridge: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
12

Sharif University of Technology

Bridge: Consequences

 Decoupling interface and implementation. An implementation is not 
bound permanently to an interface. 

 The implementation of an abstraction can be configured at run-
time.

 It's even possible for an object to change its implementation at 
run-time.

 Improved extensibility. You can extend the Abstraction and 
Implementor hierarchies independently.

 Hiding implementation details from clients. You can shield clients 
from implementation details.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
13

Sharif University of Technology

Composite

 Intent:
 Compose objects into tree structures to represent part-whole 

hierarchies. Composite lets clients treat individual objects and 
compositions of objects uniformly.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
14

Sharif University of Technology

Composite: Applicability

 Use the Composite pattern when

 you want to represent whole-part- hierarchies of objects.

 you want clients to be able to ignore the difference between 
compositions of objects and individual objects. Clients will treat 
all objects in the composite structure uniformly.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
15

Sharif University of Technology

Composite: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
16

Sharif University of Technology

Composite: Typical Object Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
17

Sharif University of Technology

Composite: Consequences

 wherever client code expects a primitive object, it can also take a 
composite object.

 makes the client simple. Clients can treat composite structures and 
individual objects uniformly, and this simplifies their code.

 makes it easier to add new kinds of components. Clients don't have 
to be changed for new Component classes. 

 can make your design overly general. It makes it harder to restrict 
the components of a composite. 

 If you want a composite to have only certain components, you can't 
rely on the type system to enforce those constraints for you. You'll 
have to use run-time checks instead.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
18

Sharif University of Technology

Decorator

 Intent:
 Attach additional responsibilities to an object dynamically. Decorators 

provide a flexible alternative to subclassing for extending functionality.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
19

Sharif University of Technology

Decorator: Class Hierarchy



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
20

Sharif University of Technology

Decorator: Applicability

 Use the Decorator pattern

 to add responsibilities to individual objects dynamically and 
transparently, that is, without affecting other objects.

 for responsibilities that can be withdrawn.

 when extension by subclassing is impractical. Sometimes a 
large number of independent extensions are possible and 
would produce an explosion of subclasses. 



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
21

Sharif University of Technology

Decorator: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
22

Sharif University of Technology

Decorator: Consequences

 More flexibility than static inheritance.

 Avoids feature-laden classes high up in the hierarchy.

 A decorator and its component aren't identical.

 Lots of little objects.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
23

Sharif University of Technology

Façade 

 Intent:
 Provide a unified interface to a set of interfaces in a subsystem. 

Facade defines a higher-level interface that makes the 
subsystem easier to use.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
24

Sharif University of Technology

Façade: Class Hierarchy



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
25

Sharif University of Technology

Façade: Applicability

 Use the Façade pattern when

 you want to provide a simple interface to a complex 
subsystem.

 there are many dependencies between clients and the 
implementation classes of an abstraction.

 you want to layer your subsystems. Use a facade to define an 
entry point to each subsystem level.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
26

Sharif University of Technology

Façade: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
27

Sharif University of Technology

Façade: Consequences

 It shields clients from subsystem components, thereby 
reducing the number of objects that clients deal with, 
making the subsystem easier to use.

 It promotes weak coupling between the subsystem and 
its clients.

 It doesn't prevent applications from using subsystem 
classes if they need to. Thus you can choose between 
ease of use and generality.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
28

Sharif University of Technology

Flyweight 

 Intent:
 Use sharing to support large numbers of fine-grained objects 

efficiently.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
29

Sharif University of Technology

Flyweight: Class Hierarchy



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
30

Sharif University of Technology

Flyweight: Applicability

 Use the Flyweight pattern when

 An application uses a large number of objects.

 Storage costs are high because of the sheer quantity of objects.

 Most object state can be made extrinsic.

 Many groups of objects may be replaced by relatively few 
shared objects once extrinsic state is removed.

 The application doesn't depend on object identity. Since 
flyweight objects may be shared, identity tests will return true 
for conceptually distinct objects.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
31

Sharif University of Technology

Flyweight: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
32

Sharif University of Technology

Flyweight: Typical Object Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
33

Sharif University of Technology

Flyweight: Consequences

 Saves storage.

 May introduce run-time costs associated with 
transferring, finding, and/or computing extrinsic state, 
especially if it was formerly stored as intrinsic state.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
34

Sharif University of Technology

Proxy 

 Intent:
 Provide a surrogate or placeholder for another object to control 

access to it.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
35

Sharif University of Technology

Proxy: Class Hierarchy



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
36

Sharif University of Technology

Proxy: Applicability

 Use the Proxy pattern when a surrogate is needed:

 Remote proxy: provides a local representative for an object in a 
different address space. 

 Virtual proxy: creates expensive objects on demand. 

 Protection proxy: controls access to the original object. 

 Smart reference: a replacement for a bare pointer that performs 
additional actions when an object is accessed:

 counting the number of references to the real object so that 
it can be freed when there are no more references.

 loading a persistent object into memory when it's first 
referenced.

 checking that the real object is locked before it's accessed to 
ensure that no other object can change it.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
37

Sharif University of Technology

Proxy: Structure



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
38

Sharif University of Technology

Proxy: Consequences

 Introduces a level of indirection when accessing an 
object. The additional indirection has many uses, 
depending on the kind of proxy:

 A remote proxy can hide the fact that an object resides in a 
different address space.

 A virtual proxy can perform optimizations such as creating an 
object on demand.

 Both protection proxies and smart references allow additional 
housekeeping tasks when an object is accessed.



Patterns in Software Engineering – Lecture 3

Department of Computer Engineering
39

Sharif University of Technology

Reference

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design 
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.


