Patterns In
Software Engineering

| ecturer: Raman Ramsin

Lecture 3

GoF Design Patterns — Structural

Department of Computer Engineering Sharif University of Technology

1

u
GoF Structural Patterns

m Class/Object

Adapter: Convert the interface of a class into another interface
clients expect. Adapter lets classes work together that couldn't
otherwise because of incompatible interfaces.

m Object

Bridge: Decouple an abstraction from its implementation so that the
two can vary independently.

Composite: Compose objects into tree structures to represent whole-
part hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically.

Facade: Provide a unified interface to a set of interfaces in a
subsystem.

Flyweight: Use sharing to support large numbers of fine-grained
objects efficiently.

Proxy: Provide a surrogate or placeholder for another object to
control access to it.

Department of Computer Engineering Sharif University of Technology

u Patterns in Software Engineering — Lectu

Adapter

m Intent:

Convert the interface of a class into another interface clients expect.
Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

DrawingEditor e Shape

BoundingBox()

CreateManipulator()

A

— TextView

GeltExtent()

Line

TextShape

BoundingBox()

CreateManipulator()

Department of Computer Engineering

BoundingBox() o=
CreateManipulator() ©-

---------- retum text->GetExtent() H

=== retum new TextManipulator |

Sharif University of Technology

E
Adapter: Applicability

m Use the Adapter pattern when

you want to use an existing class, and its interface does not match the
one you need.

you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have
compatible interfaces.

(object adapter only) you need to use several existing subclasses, but
it's impractical to adapt their interface by subclassing every one. An
object adapter can adapt the interface of its parent class.

Department of Computer Engineering Sharif University of Technology

u Patterns in Software Engineering — Lecture

Adapter (Class): Structure

Client l-l Target Adaptee

Request(} SpecificRequest()

A A

(implementation)

Adapter
. B
Request() O-F--------1 SpecificRequest()
Department of Computer Engineering Sharif University of Technology

u Patterns in Software Engineering — Lecture

Adapter (Object): Structure

Client = Target —{ Adaptee
Reguest) SpecificRequest()
adaplee
Adapter
Request() O-f----—------- adaptee-=5peacificRequest() E‘
Department of Computer Engineering Sharif University of Technology

-
Adapter (Class): Consequences

v’ lets Adapter override some of Adaptee's behavior, since Adapter is a
subclass of Adaptee.

v Introduces only one object, and no additional pointer indirection is
needed to get to the adaptee.

x gdapts Adaptee to Target by committing to a concrete Adapter
class. As a consequence, a class adapter won't work when we want
to adapt a class and all its subclasses.

Department of Computer Engineering Sharif University of Technology

E
Adapter (Object). Conseguences

v lets a 5/’(7]7‘7/9 Adapter work with many Adaptees—that is, the Adaptee
itself and all of its subclasses (if any). The Adapter can also add
functionality to all Adaptees at once.

x makes It harder to override Adaptee behavior. It will require
subclassing Adaptee and making Adapter refer to the subclass rather

than the Adaptee itself.

Department of Computer Engineering Sharif University of Technology

g Patierns in Software Engineering — Lectl
Bridge

m Intent:

Decouple an abstraction from its implementation so that the two can
vary independently.

imp
Window Ko W Windowlmp

DrawText() DevDrawText|)
DrawRect{) o DevDrawline()

[R ——

imp—=DevDrawLine()
_—-| imp=>DevDrawLine()
imp—=DevDraw Llnep

imp—>DevDrawLinea()

AN
I | I |

lconWindow TransientWindow XWindowlmp PMWindowlmp

DevDrawLine()
DevDrawText()

DevDrawLine{} ¢

]
1
1
DrawRect() DrawRect() XDrawling() E XDrawStringl)
DrawText()

Department of Computer Engineering

DrawBorder(} ¢ DrawCloseBox{} ¢ DevDrawText() ©-F--
I
i
[}

Sharif University of Technology

-
Bridge: Applicability

m Use the Bridge pattern when

you want to avoid a permanent binding between an abstraction
and its implementation; for example, when the implementation
must be selected or switched at run-time.

both the abstractions and their implementations should be
extensible by subclassing; combine different abstractions and
implementations and extend them independently.

changes in the implementation of an abstraction should have
no impact on clients; that is, their code should not have to be
recompiled.

(C++? you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is
visible in the class interface.

you want to share an implementation among multiple objects
and this fact should be hidden from the client.

Department of Computer Engineering Sharif University of Technology

10

R
Bridge: Structure

| Abstraction o> =l implementor

Operation{} 9 Operationimp()

L | imp—>0Oparationimp(),

T

ConcretelmplementorA ConcretelmplementorB

RefinedAbstraction

Operationimp() Operationimpi)

Department of Computer Engineering Sharif University of Technology

11

E
Bridge: Conseqguences

v’ Decoupling interface and implementation. An implementation is not
bound permanently to an interface.

The implementation of an abstraction can be configured at run-
time.

It's even possible for an object to change its implementation at
run-time.

v Improved extensibility. You can extend the Abstraction and
Implementor hierarchies independently.

v’ Hiding implementation details from clients. You can shield clients
from implementation details.

Department of Computer Engineering Sharif University of Technology

12

E
Composite

m Intent:

Compose objects into tree structures to represent part-whole
hierarchies. Composite lets clients treat individual objects and
compositions of objects uniformly.

Graphic b'-

Draw(}
Add(Graphic)
Remove(Graphic)
GetChild{int)

A

| I I I graphics
Line Rectangle Text Picture po—
Draw() Draw() Draw() Draw() G-=-====f=======-=--- '0’3.“[:3;%]raphics H
Add(Graphic g) ©—-—-- :
Remove({Graphic)]
GelChild(int) ~--+ add g to list of graphics H

Department of Computer Engineering Sharif University of Technology

13

E
Composite: Applicability

m Use the Composite pattern when

you want to represent whole-part- hierarchies of objects.

you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat
all objects in the composite structure uniformly.

Department of Computer Engineering Sharif University of Technology

14

Patterns in Software Engineering — Lecture

Composite: Structure

Client

Component

Operation{}

Addi{Component)
Remove{Component)

GetChild{int)

A

Leaf

Operation()

Department of Computer Engineering

Composite

children

Operation{) C------
Add{Component)
Remove(Component)
GetChild(int)

___________ forall g in children
g.Operation();

15

Sharif University of Technology

u Patterns in Software Engineering — Lecture

Composite: Typical Object Structure

aComposite

aComposite

FaLeaf] [aleaf j

Department of Computer Engineering 16 Sharif University of Technology

E
Composite: Conseguences

v’ wherever client code expects a primitive object, it can also take a
composite object.

v'makes the client simple. Clients can treat composite structures and
individual objects uniformly, and this simplifies their code.

v’ makes It easier to add new kinds of components. Clients don't have
to be changed for new Component classes.

x can make your design overly general. It makes it harder to restrict
the components of a composite.

If you want a composite to have only certain components, you can't
rely on the type system to enforce those constraints for you. You'll
have to use run-time checks instead.

Department of Computer Engineering 17 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Decorator

m Intent:

Attach additional responsibilities to an object dynamically. Decorators
provide a flexible alternative to subclassing for extending functionality.

Sorme applicaliors would barsi|
Troem uging abpcls o moosl ey
aspect al lhar funchansity but

nane design snpeaach would be
prizhituliely sapansive

aBorderDecorator

Far searmghs, aoal domurant so—
mors madubaros e) bormsi-
g ard achirg fBcibes G some
anlarl Howsese, 1wy rvarakhy
pp shar of uang obisss 1
mpraaanl aach chamcks: and

aScrollDecorator -

graphical suman| it documeand
Diorg 30 woukd prosmess Jaubdily
& o al lhe lreal ksl 0t
o & i - 5 spphaasan, Taxl and graphics
aT.’xtVIW i "".’9" 2t ! ' L -, gkl ba Imsatag uriermy wik
T mw;,“'f:.*«f"*_‘ o :
o= "‘j’ Pt ‘,:\’-:*:’ > o a | P
o &
- "‘3*4":?5 .,«":hd‘"

4

-,

(aBorderDecorator —
aSecroliDecorator

t\cumpunent . aTextView \I
componeni = 7 _J

Department of Computer Engineering Sharif University of Technology

18

u Patterns in Software Engineering — Lecture

Decorator: Class Hierarchy

VisualComponent &

Drawy{)
[| component
TextView Decorator
Draw()) CeeeeesessmsEssenoemsasey component->Draw() H
I I
ScroliDecorator BorderDecorator
— e — Decorator: Draw) "1
ScroliTo() DrawBorder()
scrollPosition borderWidth
Department of Computer Engineering Sharif University of Technology

19

E
Decorator: Applicability

m Use the Decorator pattern

to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

for responsibilities that can be withdrawn.

when extension by subclassing is impractical. Sometimes a
large number of independent extensions are possible and
would produce an explosion of subclasses.

Department of Computer Engineering 20 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Decorator: Structure

Component -
Operation()
| | component
ConcreteComponent Decorator
Operation() Operation() O-f--=-===-====-====-—-—-—-— component->0peration(]ﬂ
I I
ConcreteDecoratorA ConcreteDecoratorB
) , Decorator::Operation();
Operation() Operation() ©O------f--==-=7 AddedBehavE)rn: } ‘1
AddedBehavior()
addedState

Department of Computer Engineering Sharif University of Technology

21

-
Decorator: Consequences

v’ More flexibility than static inheritance.

v’ Avoids feature-laden classes high up in the hierarchy.

x A decorator and its component aren't identical.

x [ots of [ittle objects.

Department of Computer Engineering Sharif University of Technology

22

g™ Patteins in Software Engineering — Lect
Facade

m Intent:

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the
subsystem easier to use.

clienl classes

L\~

-+ {Fseade

subsystem classes

Department of Computer Engineering Sharif University of Technology

23

VN
==,
N,

E
Facade: Class Hierarchy

o'!
[}

Compiler

Compite()

T

R

Stream Scanner - -Mm Token —

4

---w= Parser Symbol |[w—

——I BytecodeStream

bl ProgramNodeBuilder - - ProgramNode

A

CodeGenerator |‘ - StatementNode
______ A ExpressionNode
StackMachineCodeGenerator RISCCodeGenerator VariableNode

Department of Computer Engineering Sharif University of Technology

24

E
Facade: Applicability

m Use the Facade pattern when

you want to provide a simple interface to a complex
subsystem.

there are many dependencies between clients and the
implementation classes of an abstraction.

you want to layer your subsystems. Use a facade to define an
entry point to each subsystem level.

Department of Computer Engineering 75 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Facade: Structure

Facade

g

Department of Computer Engineering

26

Sharif University of Technology

-
Facade: Consequences

v’ It shields clients from subsystem components, thereby
reaucing the number of objects that clients deal with,
making the subsystem easier to use.

v’ It promotes weak coupling between the subsystem and
its clients.

v’ It doesn’t prevent applications from using subsystem
classes If they need to. Thus you can choose between
ease of use and generality.

Department of Computer Engineering 27 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Flyweight

m Intent:

Use sharing to support large numbers of fine-grained objects
efficiently.

column

Department of Computer Engineering Sharif University of Technology

28

u Patterns in Software Engineering — Lecture

Flyweight: Class Hierarchy

D
2=,
N

o'!
[}

me Glyph -

Draw{Context)
Intersects(Point, Context)

A

—<> Row Character Column o
childran children
Draw(Context) Draw{Context) Draw{Context)
Intersects(Point, Context) Intersects{Point, Context) Intersects(Point, Context)
charc

Department of Computer Engineering Sharif University of Technology

29

E
Flyweight: Applicability

m Use the Flyweight pattern when

An application uses a large number of objects.
Storage costs are high because of the sheer quantity of objects.
Most object state can be made extrinsic.

Many groups of objects may be replaced by relatively few
shared objects once extrinsic state is removed.

The application doesn't depend on object identity. Since
flyweight objects may be shared, identity tests will return true
for conceptually distinct objects.

Department of Computer Engineering 30 Sharif University of Technology

u Patterns in Software Engineering — Lecture

Flyweight: Structure

FlyweightFactory quweights e Flyweight
GetFlyweight(key) ¢ Operation{extrinsicState}
7 3 i
|
if (fiyweight[key] exists) { ™
return existing flyweight;
jelse {
create new fiyweight;
add it to pool of fiyweights,
retum the new fiyweight;
AN
e ConcreteFlyweight — e UnsharedConcreteFlyweight
Operation{extrinsicState) Operation(extrinsicState)
intrinsicState allState

Client

Department of Computer Engineering Sharif University of Technology

31

u Patterns in Software Engineering — Lecture

Flyweight: Typical Object Structure

wior) (eGem)

Hywegighi
ileial] ' '

(' aFlyweightFactory A |/_ aConcreneFtywelghﬁ |/_ aConcreterweighl\]

Lﬂweights * ; -'LinlrlnslcStale /J "’kimrinsicStale J

Department of Computer Engineering Sharif University of Technology

32

E
Flyweight: Consequences

v’ Saves storage.

x May introduce run-time costs associated with
transferring, finding, and/or computing extrinsic state,
especially if it was formerly stored as intrinsic state.

Department of Computer Engineering Sharif University of Technology

33

R
Proxy

m Intent:
Provide a surrogate or placeholder for another object to control
access to it.
(aTextDocument 0 animageProxy 1
kimage * S anlmage W
ileName w—-- - - B —]

in memory on disk

Department of Computer Engineering Sharif University of Technology

34

R
Proxy: Class Hierarchy

DocumentEditor ll-'l Graphic

Drawy()

GelExtent()

Store{)

L oady)

AN I
Image - — — —— ——— ImageProxy if {image == 0} {
_ image = Loadimage{fileName),
Draw() - IMage| Draw() O mage->Draw()
GetExtent() GelExtent{) o-F----3 2
Store() Store() |
I if {image == 0) {

Load() Load() e s return extent;
- HloN } eise |
imagelimp neName return image-=GetExtent{);
extent extent }

Department of Computer Engineering Sharif University of Technology

35

-
Proxy: Applicability

m Use the Proxy pattern when a surrogate is needed:

Remote proxy: provides a local representative for an object in a
different address space.

Virtual proxy: creates expensive objects on demand.
Protection proxy: controls access to the original object.

Smart reference: a replacement for a bare pointer that performs
additional actions when an object is accessed:

m counting the number of references to the real object so that
it can be freed when there are no more references.

» loading a persistent object into memory when it's first
referenced.

m checking that the real object is locked before it's accessed to
ensure that no other object can change it.

Department of Computer Engineering Sharif University of Technology

36

Proxy: Structure

Patterns in Software Engineering — Lecture

Subject
Request()
RealSubject |e_ 2 ouE | broxy
Request() Request() O-p--------- .réalSubiect—>Requestt): 1
(" aClient h —
: aP
k subject ¢ oy aRealSubject w
-~ realSubject &—— J

Department of Computer Engineering

37

Sharif University of Technology

-
Proxy: Consequences

v’ Introduces a level of indirection when accessing an
object. The additional indirection has many uses,
depending on the kind of proxy:

A remote proxy can hide the fact that an object resides in a
different address space.

A virtual proxy can perform optimizations such as creating an
object on demand.

Both protection proxies and smart references allow additional
housekeeping tasks when an object is accessed.

Department of Computer Engineering 38 Sharif University of Technology

u Patterns in Software Engineering — Lec

Reference

m Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns. Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

Department of Computer Engineering Sharif University of Technology

39

