
Patterns in
Software Engineering

Lecturer: Raman Ramsin

Lecture 17

AntiPatterns
Part 2

Department of Computer Engineering
1

Sharif University of Technology

Part 2

Patterns in Software Engineering – Lecture 17

AntiPatterns: ArchitecturalAntiPatterns: Architectural

Stovepipe System/Enterprise: Subsystems/systems are
integrated in an ad hoc manner using multiple integration strategies
and mechanismsand mechanisms.

Cover Your Assets: Document-driven software processes that
produce less than useful requirements and specifications because theproduce less-than-useful requirements and specifications because the
authors evade making important decisions.

V d L k I V d L k I i t th t hi hlVendor Lock−In: Vendor Lock−In occurs in systems that are highly
dependent upon proprietary architectures.

A hi b I li i h l k f hi ifi iArchitecture by Implication: the lack of architecture specifications
for a system under development.

Department of Computer Engineering
2

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural (Contd.)AntiPatterns: Architectural (Contd.)

Design by Committee: Design by Committee creates overly
complex architectures that lack coherencecomplex architectures that lack coherence.

Swiss Army Knife: An excessively complex interface.

Reinvent the Wheel: The pervasive lack of experience transfer
between software projects leads to substantial reinvention.

The Grand Old Duke of York: Egalitarian software processes often
ignore people’s talents to the detriment of the project: We need
b i i ll i l i iabstractionists as well as implementationists.

Department of Computer Engineering
3

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Stovepipe System/Enterprisep p y p

Stovepipe System/Enterprise: Subsystems/systems are integrated in anStovepipe System/Enterprise: Subsystems/systems are integrated in an
ad hoc manner using multiple integration strategies and mechanisms.

Stovepipe is a popular term used to describe software systems with ad hocStovepipe is a popular term used to describe software systems with ad hoc
architectures.

The key problem in a Stovepipe System is the lack of common subsystem
abstractions.

the key problem in a Stovepipe Enterprise is the absence of common multisystem
conventionsconventions.

Solution:Solution:

Enhance encapsulation and introduce common abstractions through layered
architectures.

Department of Computer Engineering
4

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Cover Your Assets

Cover Your Assets: Document-driven software processes often produce
less-than-useful requirements and specifications because the authors evadeless than useful requirements and specifications because the authors evade
making important decisions.

In order to avoid making a mistake, the authors take a safer course and
elaborate upon alternatives.

Solution:Solution:

Enforce the production of Architecture blueprints: abstractions of information
systems that facilitate communication of requirements and technical plans
b t th d d lbetween the users and developers.

An architecture blueprint is a small set of diagrams and tables that
communicate the operational, technical, and systems architecture of current p , , y
and future extensions to information systems.

A typical blueprint comprises no more than a dozen diagrams and tables,
and can be presented in an hour or less as a viewgraph presentation

Department of Computer Engineering
5

Sharif University of Technology

and can be presented in an hour or less as a viewgraph presentation.

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Vendor Lock−In

Vendor Lock In: Occurs in systems that are highly dependent uponVendor Lock−In: Occurs in systems that are highly dependent upon
proprietary architectures.

A software project adopts a product technology and becomes completelyA software project adopts a product technology and becomes completely
dependent upon the vendor’s implementation.

When upgrades are done, software changes and interoperability problems occur, g g
and continuous maintenance is required to keep the system running.

Expected new product features are often delayed, causing schedule slips and an
inabilit to complete desi ed application soft a e feat esinability to complete desired application software features.

Solution:Solution:

Introduce an isolation layer that separates software packages and technology.

Department of Computer Engineering
6

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Architecture by Implicationy p

Architecture by Implication: the lack of architectureArchitecture by Implication: the lack of architecture
specifications for a system under development.

U ll th hit t ibl f th j t h i ithUsually, the architects responsible for the project have experience with
previous system construction, and therefore assume that documentation
is unnecessary.

Management of risk in follow-on system development is often
overlooked due to overconfidence and recent system successes.

Solution:

A general architecture definition approach that is tailored to each
application system can help identify unique requirements and risk areas.

Department of Computer Engineering
7

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Design By Committeeg y

Design by Committee: The classic AntiPattern from standards bodies;Design by Committee: The classic AntiPattern from standards bodies;

Creates overly complex architectures that lack coherence.

It h f t d i ti th t it i i f ibl f fIt has so many features and variations that it is infeasible for any group of
developers to realize the specifications in a reasonable time frame.

Even if the designs were possible, it would not be possible to test the full designEven if the designs were possible, it would not be possible to test the full design
due to complexity, ambiguities, overconstraint, and other specification defects.

The design would lack conceptual clarity because so many people contributed to
it and extended it during its creation.

Solution:

Clarification of architectural roles and improved process facilitation can refactor
bad meeting processes into highly productive events.

Department of Computer Engineering
8

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Swiss Army Knifey

Swiss Army Knife: An excessively complex interface.

The designer attempts to provide for all possible uses of the class. In the
attempt, he or she adds a large number of interface signatures in an attempt
to meet all possible needs.

Prevalent in commercial software interfaces, where vendors are attempting
t k th i d t li bl t ll ibl li tito make their products applicable to all possible applications.

Solution:Solution:

Define a clear purpose for the component and properly abstract the
interface to manage complexityinterface to manage complexity.

Wrap the Interface in simplifying adapters. Apply the Interface Segregation
Principle (ISP).

Department of Computer Engineering
9

Sharif University of Technology

c p e (S)

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Reinvent the Wheel

Reinvent the Wheel: The pervasive lack of experience p p
transfer between software projects leads to substantial
reinvention.

“Our problem is unique.”

Virtually all systems development is done in isolation of projects
and systems with overlapping functionality.

Solution:

Design knowledge buried in legacy assets can be leveraged to reduce
time-to-market, cost, and risk.

Department of Computer Engineering
10

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Architectural – Grand Old Duke of York

The Grand Old Duke of York: Egalitarian software processes often ignore
people’s talents to the detriment of the projectpeople’s talents to the detriment of the project.

Programming skill does not equate to skill in defining abstractions. There appear
to be two distinct groups involved in software development: abstractionists g p p
(Architects) and their counterparts the implementationists.

According to experts, implementationists outnumber abstractionists
approximately 4 to 1 Thus unfortunately abstractionists are often outvotedapproximately 4 to 1. Thus, unfortunately, abstractionists are often outvoted.

Primary consequence: software designs with excessive complexity, which make
the system difficult to develop, modify, extend, document, and test.

Software usability and system maintenance are impacted by a failure to use
effective abstraction principles.

S l tiSolution:

Identifying and differentiating among distinct development roles, and giving
architects control over architectural design.

Department of Computer Engineering
11

Sharif University of Technology

architects control over architectural design.

Patterns in Software Engineering – Lecture 17

AntiPatterns: ManagementAntiPatterns: Management

Analysis Paralysis: Striving for perfection and completeness in the analysis
phase leading to project gridlock and excessive work on
requirements/modelsrequirements/models.

Viewgraph Engineering: On some projects, developers become stuck
preparing viewgraphs and documents instead of developing softwarepreparing viewgraphs and documents instead of developing software.

Death by Planning: Excessive planning for software projects leading to
complex schedules that cause downstream problems.complex schedules that cause downstream problems.

Fear of Success: Often occurs when people and projects are on the brink
of success. Some people begin to worry obsessively about the kinds of p p g y y
things that can go wrong.

Department of Computer Engineering
12

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management (Contd.)AntiPatterns: Management (Contd.)

Corncob: Difficult people frequently obstruct and divert the software
development process.

Intellectual Violence: Intellectual violence occurs when someone who
understands a theory, technology, or buzzword uses this knowledge to
intimidate others in a meeting situationintimidate others in a meeting situation.

Smoke and Mirrors: Demonstration systems are important sales tools, but
they are often interpreted by end users as representational of production-they are often interpreted by end users as representational of production
quality capabilities.

Project Mismanagement: Inattention to the management of software j g g
development processes causing directionlessness and other symptoms.

Department of Computer Engineering
13

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Analysis Paralysisg y y

Analysis Paralysis: Striving for perfection and completenessAnalysis Paralysis: Striving for perfection and completeness
in the analysis phase often leads to project gridlock and
excessive thrashing of requirements/models.

Developers new to object-oriented methods do too much up-front
analysis and design, using analysis modeling as an exercise to feel

f bl i h bl d icomfortable in the problem domain.

A key indicator of Analysis Paralysis is that the analysis documents no
longer make sense to the domain expertslonger make sense to the domain experts.

Solution:

Iterative-incremental development processes that defer detailed
analysis until the knowledge is needed.

Department of Computer Engineering
14

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Viewgraph Engineeringg g p g g

Viewgraph Engineering: Developers become stuck preparingViewgraph Engineering: Developers become stuck preparing
viewgraphs and documents instead of developing software.

Organizations with limited technical capabilities for systemOrganizations with limited technical capabilities for system
development are taken at face value because they produce
substantive documents and polished briefings.

Solution:

Verify the development capabilities of the organization and key project
staff.

Utilize prototyping and mock−ups as part of any system development
process.

Department of Computer Engineering
15

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Death by Planningg y g

Death by Planning: Excessive planning for software projects leading to
complex schedules that cause downstream problems.

Solution:

Deliverable based planning supplemented with validation milestonesDeliverable-based planning, supplemented with validation milestones.
Plans should be reviewed and revised on a weekly basis.

Department of Computer Engineering
16

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Fear of Successg

Fear of Success: Often occurs when people and projects are
on the brink of success.

Some people begin to worry obsessively about the kinds of
things that can go wrongthings that can go wrong.

Solution:

When project completion is imminent make a clear declaration ofWhen project completion is imminent, make a clear declaration of
success.

Department of Computer Engineering
17

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Corncobg

Corncob: Difficult people frequently obstruct and divert the software development
process.

This attitude can be due to aspects of individual personality, but often, difficulties
arise from personal motivations for recognition or monetary incentives.arise from personal motivations for recognition or monetary incentives.

Solution: Address agendas of the individual through various tactical, operational,
and strategic organizational actions.

Transfer the responsibility.
Isolate the issue.
Question the questionQuestion the question.
Corrective interview.
Friendly outplacement.
C bCorncob support group.
Empty department.
Reduction in force.

Department of Computer Engineering
18

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Intellectual Violenceg

Intellectual Violence: Intellectual violence occurs when
someone who understands a theory, technology, or buzzword
uses this knowledge to intimidate others in a meeting situation.

Solution:Solution:

Encourage education and practice mentoring throughout the
organizationorganization.

Department of Computer Engineering
19

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Smoke and Mirrorsg

Smoke and Mirrors: Demonstration systems are important y p
sales tools, but they are often interpreted by end users as
representational of production-quality capabilities.

Solution:Solution:

Practice proper ethics to manage expectations, risk, liabilities, and
consequences in computing sales and marketing situationsconsequences in computing sales and marketing situations.

Department of Computer Engineering
20

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

AntiPatterns: Management – Project Mismanagementg j g

Project Mismanagement: Inattention to the management ofProject Mismanagement: Inattention to the management of
software development processes can cause directionlessness and
other symptoms.

Proper monitoring and control of software projects is necessary for successful
development activities.

Often, key activities are overlooked or minimized. These include technical
planning (architecture) and quality-control activities (inspection and test).

Solution:

Proper risk management incorporated in the project management
process.

Department of Computer Engineering
21

Sharif University of Technology

Patterns in Software Engineering – Lecture 17

R fReference

Brown, W. J., Malveau, R. C., McCormick, H., Mowbray, T.,
Antipatterns: Refactoring Software, Architectures, and Projects
in Crisis. Wiley, 1998.

Department of Computer Engineering
22

Sharif University of Technology

