
Patterns in
Software Engineering

Lecturer: Raman Ramsin

Lecture 16

AntiPatterns
Part 1

Department of Computer Engineering
1

Sharif University of Technology

Part 1

Patterns in Software Engineering – Lecture 16

AntiPatternsAntiPatterns

Compiled and presented by Brown et al in 1998Compiled and presented by Brown et al. in 1998.

"An AntiPattern describes a commonly occurring solution to aAn AntiPattern describes a commonly occurring solution to a
problem that generates decidedly negative consequences."

The AntiPattern may be the result of a manager or developer:

t k i b ttnot knowing any better,

not having sufficient knowledge or experience in solving a particular
type of problem ortype of problem, or

having applied a perfectly good pattern in the wrong context.

Department of Computer Engineering
2

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: ViewpointsAntiPatterns: Viewpoints

AntiPatterns are presented from three perspectives – developer,
architect, and manager:

Development AntiPatterns: comprise technical problems and
solutions that are encountered by programmers.y p g

Architectural AntiPatterns: identify and resolve common problems
i h t t t din how systems are structured.

Managerial AntiPatterns: address common problems in softwareManagerial AntiPatterns: address common problems in software
processes and development organizations.

Department of Computer Engineering
3

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: DevelopmentAntiPatterns: Development

The Blob: Procedural−style design leads to one object with most of the
responsibilities, while most other objects only hold data or simple operations.

Lava Flow: Dead code and forgotten design information is frozen in an
ever-changing design.

Ambiguous Viewpoint: Object-oriented analysis and design models
presented without clarifying the viewpoint represented by the model.

fFunctional Decomposition: The output of nonobject−oriented developers
who design and implement an application in an object−oriented language.

P lt i t Cl ith li it d l d ff ti lif l ThPoltergeists: Classes with very limited roles and effective life cycles. They
often start processes for other objects.

Department of Computer Engineering
4

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development (Contd.)AntiPatterns: Development (Contd.)

Golden Hammer: A familiar technology or concept applied obsessively to
many software problems.

Spaghetti Code: Ad hoc software structure makes it difficult to extend and
optimize code.

Walking through a Minefield: Using today’s software technology is
analogous to walking through a high-tech mine field: bugs abound.

C d P P i C d d b iCut−and−Paste Programming: Code reused by copying source
statements leads to significant maintenance problems.

M h M t K i t d l i l t d f thMushroom Management: Keeping system developers isolated from the
system’s end users.

Department of Computer Engineering
5

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – The Blobp

The Blob: Found in designs where one class monopolizes the
processing and other classes primarily encapsulate dataprocessing, and other classes primarily encapsulate data.

The key problem here is that the majority of the responsibilities
ll t d t i l l hi h t t llare allocated to a single class which acts as a controller.

Solution: Decompose the class and redistribute the
responsibilitiesresponsibilities.

Department of Computer Engineering
6

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Lava Flowp

Lava Flow: Dead code and forgotten design information is frozen in an ever-
changing design.
Causes:

R&D code placed into production without configuration management. p p g g
Uncontrolled distribution of unfinished code.
Implementation of several trial approaches for implementing a function.
Single developer (lone wolf) design or written codeSingle-developer (lone wolf) design or written code.
Lack of configuration management or process management policies.
Lack of architecture, or non-architecture-driven development.
Repetitive development process.
Architectural scars: Architectural mistakes not removed.

To solve: include a configuration management process that eliminates dead code
and evolves or refactors design toward increasing quality.
To avoid: ensure that sound architecture precedes code development.

Department of Computer Engineering
7

Sharif University of Technology

p p

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Ambiguous Viewpointp g p

Ambiguous Viewpoint: Object-oriented analysis and design (OOA&D) guous e po Objec o e ed a a ys s a d des g (OO &)
models that are presented without clarifying the viewpoint represented by
the model.

There are three fundamental viewpoints for OOA&D models:

Business viewpoint (Problem-Domain/Conceptual/Essential)

Specification viewpoint (System)

Implementation viewpoint (Software/Design)p p (/ g)

By default, OOA&D models denote an implementation viewpoint that is
potentially the least useful. Mixed viewpoints don’t allow the fundamental
separation of interfaces from implementation details.

Solution: Separate Viewpoints explicitly.

Department of Computer Engineering
8

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Functional Decompositionp p

Functional Decomposition: The result of experienced,
nonobject−oriented developers who design and implement an application in
an object−oriented language.
When developers are comfortable with a “main” routine that calls numerousWhen developers are comfortable with a main routine that calls numerous
subroutines, they may tend to make every subroutine a class, ignoring class
hierarchy altogether.

Solution: Redesign using OO principles:
S l ti 1 T t id tif k bl d i l b d l iSolution 1: Try to identify key problem-domain classes by developing an
analysis model, translate it into a design model, and refactor.
Solution 2: Consider database entities as design classes, and refactor.g ,
Although the above techniques may work, there is no straightforward
way to resolve this problem.

Department of Computer Engineering
9

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Poltergeistsp g

Poltergeists: Classes with limited responsibilities and roles to
play in the system; therefore,

their effective life cycle is quite brief;
they clutter software designs, creating unnecessary abstractions;
They can be excessively complex hard to understand and hard toThey can be excessively complex, hard to understand, and hard to
maintain.

Solution: Remove them from the class hierarchy altogether.
The functionality that was provided by it must be replaced;

Move the controlling actions initially encapsulated in the Poltergeist into
the related classes that they invoked.

Department of Computer Engineering
10

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Golden Hammerp

Golden Hammer: A Golden Hammer is a familiar technology
or concept applied obsessively to many software problems. p pp y y p

"When your only tool is a hammer, everything else is a nail."

Solution:

expanding the knowledge of developers through educationexpanding the knowledge of developers through education,
training, and book study groups to expose developers to
alternative technologies and approaches.

Department of Computer Engineering
11

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Spaghetti Codep p g

Spaghetti Code: Ad hoc software structure makes it difficult to p g
extend and optimize code.

Coding and progressive extensions have compromised the softwareCoding and progressive extensions have compromised the software
structure to such an extent that the structure lacks clarity, even to the
original developer.

If developed using an OO language, the software may include a small
number of objects that contain methods with very large implementations.

The system is very difficult to maintain and extend, and there is no
opportunity to reuse the objects and modules in other similar systems.

Solution:

Clean up and restructure the code using reengineering.

Department of Computer Engineering
12

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Walking through a Minefieldp g g

Walking through a Minefield: Using today’s software technology isWalking through a Minefield: Using today’s software technology is
analogous to walking through a high-tech mine field: Numerous bugs
are found in released software products.p

Solution:

Proper investment in software testing is required to make systems
relatively bug-free. In some progressive companies, the size of testing
staff exceeds programming staff. p g g

The most important change to make to testing procedures is
configuration control of test cases.

automation of test execution and test design.

Department of Computer Engineering
13

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Cut−and−Paste Programming p g g

Cut−and−Paste Programming: Code reused by copying
source statements.

It comes from the notion that it’s easier to modify existing
software than program from scratch.

S l tiSolution:

Eliminate duplication through refactoring and reengineering.

Replace white-box reuse with black-box reuse.

Department of Computer Engineering
14

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

AntiPatterns: Development – Mushroom Managementp g

Mushroom Management: In some architecture and management circles, us oo a age e so e a c ec u e a d a age e c c es,
there is an explicit policy to keep system developers isolated from the
system’s end users.

Requirements are passed second-hand through intermediaries, including
architects, managers, or requirements analysts.

Motto: “Keep your developers in the dark and feed them fertilizer ”Motto: Keep your developers in the dark and feed them fertilizer.

Mushroom Management assumes that requirements are well understood by
both end users and the software project at project inception. It is assumedboth end users and the software project at project inception. It is assumed
that requirements are stable.

Solution:

Risk-driven development: spiral development process based upon prototyping
and user feedback.

Department of Computer Engineering
15

Sharif University of Technology

Patterns in Software Engineering – Lecture 16

R fReference

Brown, W. J., Malveau, R. C., McCormick, H., Mowbray, T.,
Antipatterns: Refactoring Software, Architectures, and Projects
in Crisis. Wiley, 1998.

Department of Computer Engineering
16

Sharif University of Technology

