
Patterns in
Software Engineering

Lecturer: Raman Ramsin

Lecture 13

Reengineering Patterns
Part 1

Department of Computer Engineering
1

Sharif University of Technology

Part 1

Patterns in Software Engineering – Lecture 13

ReengineeringReengineering

Goal of Reengineeringg g
Reducing the complexity of a legacy system sufficiently so that it can
continue to be used and adapted at an acceptable cost.

Reasons for Reengineering
Unbundling a monolithic system so that the individual parts can beUnbundling a monolithic system so that the individual parts can be
more easily marketed separately or combined in different ways.
Improving performance.
Porting the system to a new platform.
Extracting the design as a first step to a new implementation.
E l iti t h l t t d tti i t tExploiting new technology as a step toward cutting maintenance costs.
Reducing human dependencies by documenting knowledge about the
system and making it easier to maintain.

Department of Computer Engineering
2

Sharif University of Technology

y g

Patterns in Software Engineering – Lecture 13

Symptoms of the Need for ReengineeringSymptoms of the Need for Reengineering

Obsolete or no documentation.Obsolete or no documentation.
Missing tests.
Departure of the original developers or users.
Disappearance of inside knowledge about the system: The documentation is
out of sync with the existing code base.
Limited understanding of the entire system.g y
Too long to turn things over to production.
Too much time to make simple changes.

d f b fNeed for constant bug fixes.
Maintenance dependencies.
Difficulties separating products.Difficulties separating products.
Duplicated code.
Code smells.

Department of Computer Engineering
3

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering LifecycleReengineering Lifecycle

Department of Computer Engineering
4

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Problems: ArchitecturalReengineering Problems: Architectural

Insufficient documentation: Documentation either does notInsufficient documentation: Documentation either does not
exist or is inconsistent with reality.

Improper layering: Missing or improper layering hampersImproper layering: Missing or improper layering hampers
portability and adaptability.

Lack of modularity: Strong coupling between modules hampersLack of modularity: Strong coupling between modules hampers
evolution.

D li t d d "C t d dit" i i k d b tDuplicated code: "Copy, paste, and edit" is quick and easy, but
leads to maintenance nightmares.

D li t d f ti lit Si il f ti lit i i l t dDuplicated functionality: Similar functionality is reimplemented
by separate teams, leading to code bloat.

Department of Computer Engineering
5

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Problems: DesignReengineering Problems: Design

Misuse of inheritance: For composition and code reuse rather
than polymorphismp y p

Missing inheritance: Duplicated code and case statements to
select behaviorselect behavior

Misplaced operations: Excessive coupling

Violation of encapsulation

Class abuse: Lack of cohesionClass abuse: Lack of cohesion

Department of Computer Engineering
6

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering PatternsReengineering Patterns

Reengineering patterns codify and record knowledge about
modifying legacy software.modifying legacy software.

They are stable units of expertise that can be consulted in any
reengineering effort:reengineering effort:

they help in diagnosing problems and identifying weaknesses that may
hinder further development of the system andhinder further development of the system, and

they aid in finding solutions that are more appropriate to the new
requirementsrequirements.

Department of Computer Engineering
7

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: CategoriesReengineering Patterns: Categories

Department of Computer Engineering
8

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Categories (1)Reengineering Patterns: Categories (1)

1 Setting Direction: help determine where to focus reengineering1. Setting Direction: help determine where to focus reengineering
efforts and make sure that they stay on track.

2 First Contact: useful when a legacy system is encountered for the2. First Contact: useful when a legacy system is encountered for the
first time.

3 Initial Understanding: help develop a first simple model of a legacy3. Initial Understanding: help develop a first simple model of a legacy
system, mainly in the form of class diagrams.

D t il d M d l C t h l d l d t il d d l f4. Detailed Model Capture: help develop a more detailed model of a
particular component of the system.

5. Tests: use of testing not only to help understand a legacy system,
but also to prepare it for a reengineering effort.

Department of Computer Engineering
9

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Categories (2)Reengineering Patterns: Categories (2)

6 Migration Strategies: help keep a system running while it is being6. Migration Strategies: help keep a system running while it is being
reengineered and increase the chances that the new system will be
accepted by its users.

7. Detecting Duplicated Code: help identify locations where code may
have been copied and pasted, or merged from different versions of
the software.

8. Redistribute Responsibilities: help discover and reengineer classes
with too many responsibilities.

9. Transform Conditionals to Polymorphism: help redistribute y p p
responsibilities when an object-oriented design has been
compromised over time.

Department of Computer Engineering
10

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Setting DirectionReengineering Patterns: Setting Direction
Problem: How do you establish a
common sense of purpose in a team?
Solution: Establish the key priorities
for the project and identify guidingfor the project and identify guiding
principles that will help the team to
stay on track.

Problem: Which problems should you
focus on first?
Solution: Start working on the
aspects that are most valuable to your
customer.customer.

Problem: Which parts of a legacy
system should you reengineer and

Problem: How do you maintain
architectural vision during the course of a
complex project?
Solution: Appoint a specific person whose
responsibility in the role of Navigator is to

which should you leave as they are?
Solution: Only fix the parts that are
"broken"- those that can no longer be
adapted to planned changes.

responsibility in the role of Navigator is to
ensure that the architectural vision is
maintained.

Problem: How do you keep your
team synchronized?
Solution: Hold brief regular roundSolution: Hold brief, regular round
table meetings.

Problem: How can you possibly tackle all
the reported problems?
Solution: Address the source of a problem,

th th ti l t f

Problem: How much flexibility should
you try to build into the new system?
Solution: Prefer an adequate but
simple solution to a potentially more

Department of Computer Engineering
11

Sharif University of Technology

rather than particular requests of your
Stakeholders.

simple solution to a potentially more
general but complex solution.

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: First ContactReengineering Patterns: First Contact
Problem: How can you get an idea of
the typical usage scenarios and the
main features of a software system?main features of a software system?
Solution: Observe the system in
operation by seeing a demo and
interviewing the person who is
demonstrating.

Problem: How do you get a good Problem: How do you identify those Problem: How do you get a good
perspective on the historical and
political context of the legacy system
you are reengineering?
Solution: Discuss the problem with
the system maintainers.

y y
parts of the documentation that might be
of help?
Solution: Prepare a list summarizing
interesting aspects of the system, match
this list against the documentation, and
make a crude assessment of how up to

Problem: How can you get a first impression
of the quality of the source code?
Solution: Grant yourself a reasonably short
amount of study time (e.g., approximately
one hour) to read the source code; prepare a
report of your findings

make a crude assessment of how up to
date the documentation seems.

Problem: How can you be sure that you
will be able to (re)build the system?
Solution: Try to install and build the

report of your findings.
y

system in a clean environment during a
limited amount of time (at most one day).

Department of Computer Engineering
12

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Initial UnderstandingReengineering Patterns: Initial Understanding
Problem: How do you recover the way design
concepts are represented in the source code?
Solution: Use your development expertise to
conceive a hypothetical class diagram representing
h d i R fi h d l b if i h h

Problem: Which object structures
represent the valuable data?

the design. Refine that model by verifying whether
the names in the class diagram occur in the source
code and by adapting the model accordingly.

Problem: How can you quickly identify potential
design problems in large software systems?

represent the valuable data?
Solution: Analyze the database
schema and assess which structures
represent valuable data. Derive a class
diagram representing those entities.

Solution: Measure the structural entities forming
the software system (i.e., the inheritance
hierarchy, the packages, the classes, and the
methods) and look for exceptions in the
quantitative data you collected.

Department of Computer Engineering
13

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Detailed Model CaptureReengineering Patterns: Detailed Model Capture
Problem: How can you understand a cryptic piece
of code?
Solution: Iteratively rename and refactor the code
to introduce meaningful names and to make sure

Problem: How do you keep track of,
synchronize and share your
understanding about a piece of code
and the questions that you have?
S l ti Whil ki

g
the structure of the code reflects what the system is
actually doing.

Problem: How do you discover which

Solution: While you are working on
the code, annotate it directly with the
questions you are facing.

Problem: How do you discover which
objects are instantiated at run time and
how they collaborate?
Solution: Run each of the scenarios and
use your debugger to step through the
code.

Problem: How can you discover why the system is designed
the way it is? Which parts of the system are stable and which
parts aren't?
Solution: Use tools to find entities where functionality has

Problem: How do you determine which
contracts a class supports?
Solution: Look for common programming
idioms that expose the way clients make
use of the class interface. Generalize your
b ti i th f f t t

been removed (sign of a consolidating design), and entities
that change often (sign of an unstable part of the design).

Department of Computer Engineering
14

Sharif University of Technology

observations in the form of contracts.

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: TestsReengineering Patterns: Tests

Department of Computer Engineering
15

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

Reengineering Patterns: Migration StrategiesReengineering Patterns: Migration Strategies

Department of Computer Engineering
16

Sharif University of Technology

Patterns in Software Engineering – Lecture 13

R fReference

Demeyer, S., Ducasse, S., and Nierstrasz, O., Object-Oriented
Reengineering Patterns, Elsevier Science, 2003.

Department of Computer Engineering
17

Sharif University of Technology

