Patterns in
Software Engineering

| ecturer: Raman Ramsin

Lecture 11

Refactoring Patterns
Part 2

1 Sharif University of Technology

Department of Computer Engineering

-
Moving Features: Move Function

m Move Function

A function is, or will be, using or used in another context than the context in
which it currently resides.

Create a new function with a similar body in the new context, Either turn the old
function into a simple delegation, or remove it altogether.

Class 1 Class 1
aMethod()
=
—,
Class 2 Class 2
aMethod()

Department of Computer Engineering Sharif University of Technology

Patterns in Software Engineering — Lecture

Moving Features: Move Field

m Move Field

A field is, or will be, used by another context more than the context in which it
already resides.

Create a new field in the target context, and change all its users.

Class 1

aField

Class 2

Department of Computer Engineering

Class 1

Class 2

aField

Sharif University of Technology

-
Moving Features: Slide Statements

m Slide Statements

Several lines of code access the same data structure, but they are intermingled
with code accessing other data structures.

Move them together.

const pricingPlan = retrievePricingPlan();
const order = retreiveOrder();

let charge;

const chargePerUnit = pricingPlan.unit;

const pricingPlan = retrievePricingPlan();
const chargePerUnit = pricingPlan.unit;
const order = retreiveOrder();

let charge;

Department of Computer Engineering Sharif University of Technology

Patterns in Software Engineering — Lecture

Moving Features: Split Loop

m Split Loop

You're doing two different things in the same loop, and whenever you need to
modify the loop you have to understand both things.

Split the loop into two independent ones.

let averageAge = 0;

let totalSalary = 0;

for (const p of people) {
averageAge += p.age;
totalSalary += p.salary;

}

averageAge = averageAge / people.length;

let totalSalary = 0;

for (const p of people) {
totalSalary += p.salary;

}

let averageAge = 0;

for (const p of people) {
averageAge += p.age;

}

averageAge = averageAge / people.length;

Department of Computer Engineering

Sharif University of Technology

-
Moving Features: Replace Loop with Pipeline

m Replace Loop with Pipeline
You are using loops to iterate over a collection of objects.

Use Collection Pipelines instead, which describe the processing as a series of
operations, each consuming and emitting a collection.

const names = [];
for (const i of input) {
if (i.job == "programmer")
names.push(i.name);

}

const names = input
filter(i => i.job === "programmer")
.map(i = i.name)

Department of Computer Engineering Sharif University of Technology

-
Moving Features: Remove Dead Code

m Remove Dead Code

Unused code is becoming a significant burden when trying to understand how
the software works.

Remove it mercilessly.

if(false) {
doSomethingThatUsedToMatter();

}

Department of Computer Engineering Sharif University of Technology

Organizing Data: Split Variable

m Split Variable

A variable has more than one responsibility within the method.
It should be replaced with multiple variables, one for each responsibility.

let temp = 2 * (height + width);
console.log(temp);

temp = height * width;
console.log(temp);

const perimeter = 2 * (height + width);
console.log(perimeter);

const area = height * width;
console.log(area);

Department of Computer Engineering

Sharif University of Technology

-
Organizing Data: Change Reference to Value

m Change Reference to Value
There is a changeable object, or data structure, nested within another.
Provide immutable copies of it (such as Value Objects) to pass around.

class Product {
applyDiscount(arg) {this. price.amount -= arg;}

class Product {
applyDiscount(arg) {
this. price = new Money(this. price.amount - arg, this. price.currency);

}

Department of Computer Engineering Sharif University of Technology

-
Organizing Data: Change Value to Reference

m Change Value to Reference

Immutable copies of an object or data structure are passed around, but they
need to be updated based on changes made to the original.

Change the copied data into a single reference.

let customer = new Customer(customerData);

let customer = customerRepository.get(customerData.id);

Department of Computer Engineering 10 Sharif University of Technology

L] Patterns in Software Engineering — Lecture

Simplifying Conditional Logic: Decompose Conditional

m Decompose Conditional

You have a complicated conditional (if-then-else) statement.
Extract methods from the condition, then part, and else parts.

if (date.before (SUMMER START) || date.after (SUMMER END))
charge = quantity * winterRate + winterServiceCharge;
else charge = gquantity * summerRate;

J

if (notSummer (date))
charge = winterCharge (quantity) ;

else charge = summerCharge (quantity) ;

Department of Computer Engineering 11

Sharif University of Technology

L] Patterns in Software Engineering — Lecture

Simplifying Conditional Logic: Consolidate Conditional Expression

m Consolidate Conditional Expression
You have a sequence of conditional tests with the same result.
Combine them into a single conditional expression and extract It.

double disabilityAmount () {

if (seniority < 2) return 0;
if (monthsDisabled > 12) return 0;
if (isPartTime) return 0;

// compute the disability amount

!

AV

double disabilityAmount ()
if (isNotEligableForDisability()) return 0;
// compute the disability amount

Department of Computer Engineering Sharif University of Technology

12

Patterns in Software Engineering — Lecture

Simplifying Conditional Logic: Replace Nested Conditional with Guards

m Replace Nested Conditional with Guard Clauses

A method has conditional behavior that does not make clear the normal path of
execution.

Use guard clauses for all the special cases.

Department of Computer Engineering

double getPayAmount ()
double result;

if (_isDead) result = deadAmount () ;
else {
if (isSeparated) result = separatedAmount () ;
else {
if (isRetired) result = retiredAmount () ;
else result = normalPayAmount () ;

}i
}

ffturn result; <§S§£

double getPayAmount () {

if (i1sDead) return deadAmount () ;
if (isSeparated) return separatedAmount () ;
if (i1sRetired) return retiredAmount () ;

return normalPayAmount () ;

}i

13 Sharif University of Technology

L] Patterns in Software Engineering — Lecture

Simplifying Conditional Logic: Replace Conditional with Polymorphism

m Replace Conditional with Polymorphism

You have a conditional that chooses different behavior depending on the type of an
object.

Move each leg of the conditional to an overriding method in a subclass. Make the
original method abstract.

double getSpeed()
switch (_type) {
case EUROPEAN:
return getBaseSpeed() ;
case AFRICAN:
return getBaseSpeed() - getLoadFactor() * numberOfCoconuts;
case NORWEGIAN BLUE:
return (_isNailed) ? 0 : getBaseSpeed(voltage);
}

throw new RuntimeException ("Should be unreachable") ; Bird

§i getSpeed
= N

I |

European African Norwegian Blue

}

getSpeed getSpeed getSpeed

Department of Computer Engineering Sharif University of Technology

14

-
Simplifying Conditional Logic: Introduce Special Case

m Introduce Special Case

Many users of a data structure check a specific value, and then do the same
thing.

Use the Special Case pattern to create a special-case element that captures all
the common behavior.

if (aCustomer === "unknown") customerName = "occupant";

class UnknownCustomer { 7 ~ A
get name() {return "occupant";} .

Department of Computer Engineering 15 Sharif University of Technology

L] Patterns in Software Engineering — Lecture

Simplifying Conditional Logic: Introduce Special Case: Null Object

= Introduce Null Object
You have repeated checks for a null value.
Replace the null value with a null object.

Customer
getPlan
if (customer == null) plan = BillingPlan.basic/(); 3 /
else plan = customer.getPlan() ; ﬁ-‘)'
Null Customer
getPlan
Department of Computer Engineering Sharif University of Technology

16

-
Simplifying Conditional Logic: Introduce Assertion

m Introduce Assertion

Sections of code work only if certain conditions are true. Such assumptions are
not stated and can only be deduced by looking through the algorithm.

Use assertions to state the conditions explicitly; failure of an assertion indicates
a programmer error.

if (this.discountRate)
base = base - (this.discountRate * base);

assert(this.discountRate >= 0);
if (this.discountRate)

base = base - (this.discountRate * base);

Department of Computer Engineering 17 Sharif University of Technology

Patterns in Software Engineering — Lecture

Reference

m Fowler, M., Refactoring.: Improving the Design of Existing Code,
2nd Edition, Addison-Wesley, 2019.

Department of Computer Engineering Sharif University of Technology

18

