

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 8: Relationships

Department of Computer Engineering

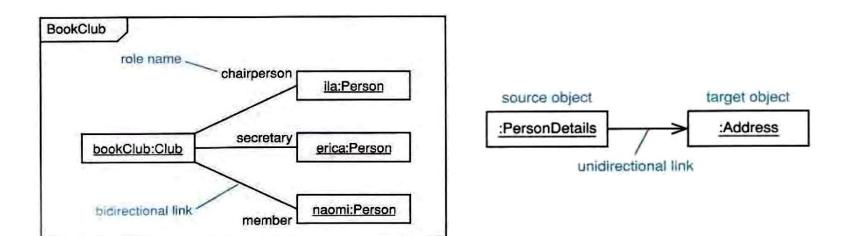
Analysis Workflow: Analyze a Use Case

- The analysis workflow consists of the following activities:
 - Architectural analysis
 - Analyze a use case
 - Outputs:
 - analysis classes
 - use case realizations
 - Analyze a class
 - Analyze a package

Relationships: Links and Associations

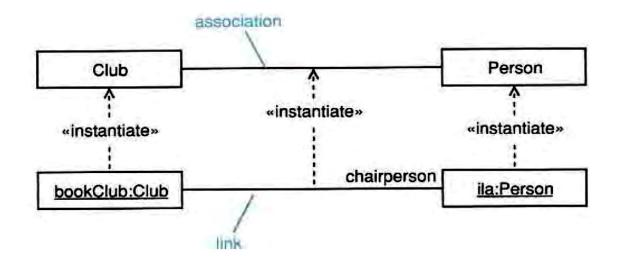
Relationships are semantic connections between things.

- □ *Links* are connections between objects.
- □ *Associations* are connections between classes.
- □ *Links* are instances of *associations* or *dependencies*.


Links

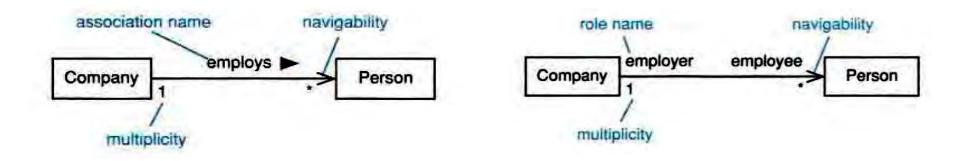
- A link occurs when one object holds an object reference to another object.
- Objects realize system behavior by collaborating:
 - collaboration occurs when objects send each other messages across links;
 - when a message is received by an object, it executes the appropriate operation.

Links and Object Diagrams


- Object diagrams show objects and their links at a particular point in time.
 - □ They are snapshots of an executing OO system at a particular time.
 - Objects may adopt roles with respect to each other the role played by an object in a link defines the semantics of its part in the collaboration.
 - N-ary links may connect more than two objects they are drawn as a diamond with a path to each object but are not widely used.

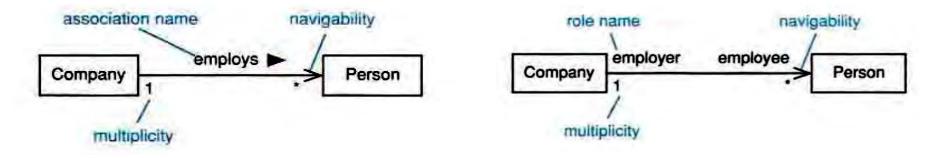
Associations

- Associations are semantic connections between classes.
 - □ If there is a link between two objects, there *must* be an association or dependency between the classes of those objects.
 - Links are instances of associations just as objects are instances of classes.


Department of Computer Engineering

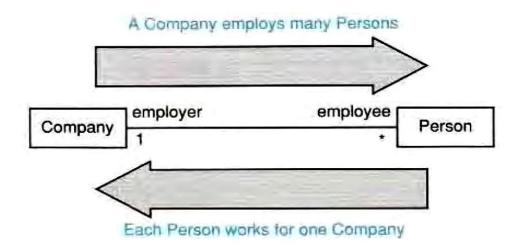
Associations: Details

Associations may optionally have the following:


- Association name
- Role names
- Multiplicity
- Navigability

Associations: Names and Roles

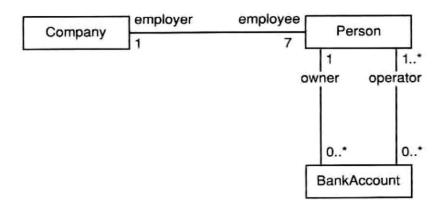
- Association name:
 - may be prefixed or postfixed with a small black arrowhead to indicate the direction in which the name should be read;
 - □ should be a verb or verb phrase;
 - \Box in lowerCamelCase.
- Role names:
 - \Box on one or both association ends;
 - □ should be a noun or noun phrase describing the semantics of the role;
 - \Box in lowerCamelCase.
- Use either an association name or role names but *not* both.



Department of Computer Engineering

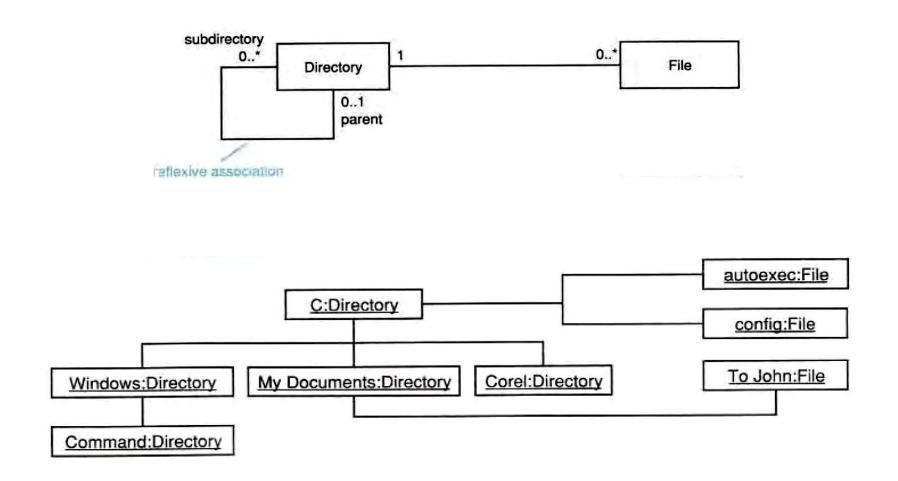
Associations: Multiplicity

- Indicates the number of objects that can be involved in the relationship at any point in time.
- Objects may come and go, but multiplicity constrains the number of objects in the relationship at any point in time.
- Multiplicity is specified by a comma-separated list of intervals, for example, 0..1, 3..5.
- There is no default multiplicity if multiplicity is not explicitly shown, then it is undecided.

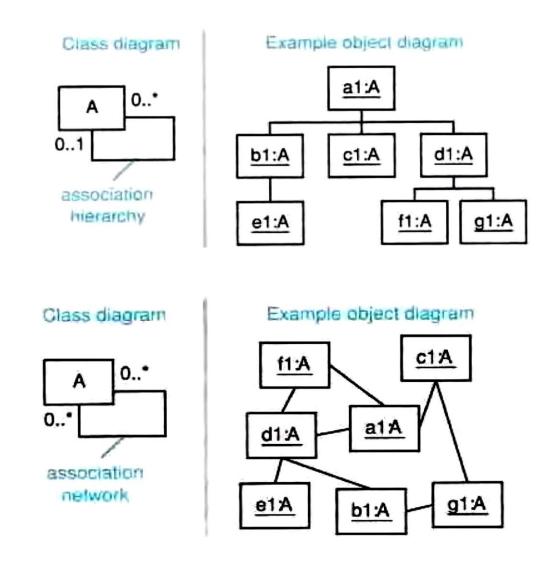


Department of Computer Engineering

Associations: Multiplicity Syntax


Adornment	Semantics
01	Zero or 1
1	Exactly 1
0*	Zero or more
*	Zero or more
1*	1 or more
16	1 to 6
13, 710, 15, 19*	1 to 3 or 7 to 10 or 15 exactly or 19 to many

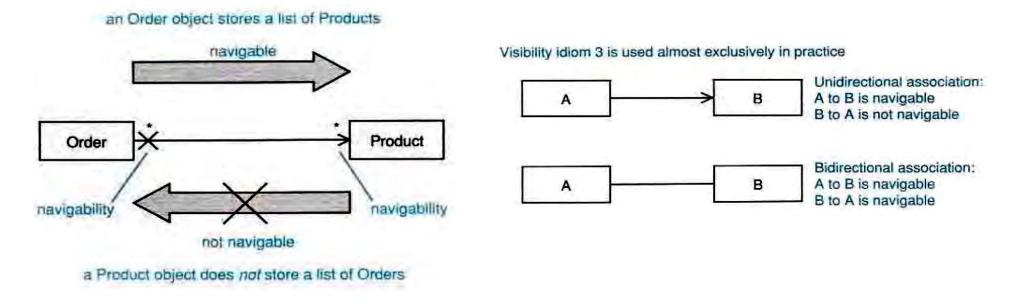
Department of Computer Engineering



Reflexive Associations

Department of Computer Engineering

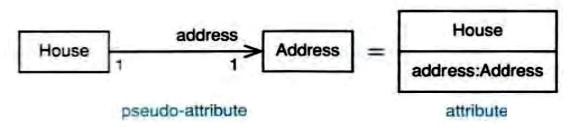
Reflexive Associations: Hierarchies and Networks



Department of Computer Engineering

Associations: Navigability

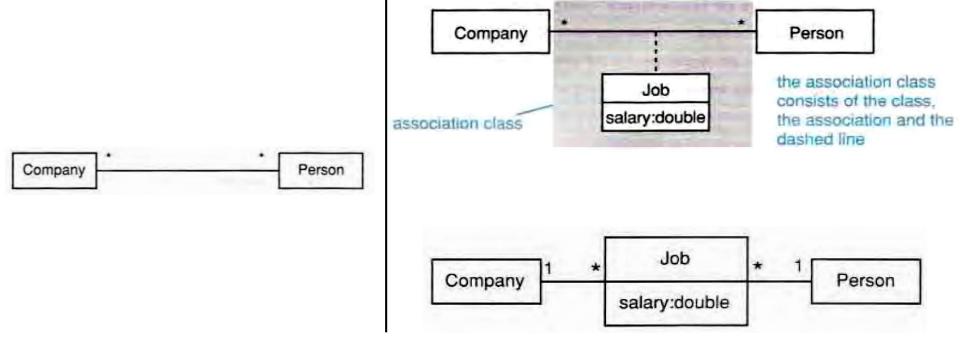
- Shown by an arrowhead on one end of the relationship if a relationship has no arrowheads, then it is bidirectional.
- Navigability indicates that you can traverse the relationship in the direction of the arrow.
- You may also be able to traverse back the other way, but it will be computationally expensive to do so.



Associations and Attributes

- An association between two classes is equivalent to one class having a pseudoattribute that can hold a reference to an object of the other class:
 - □ you can often use associations and attributes interchangeably;
 - use association when you have an important class on the end of the association that you wish to emphasize;
 - use attributes when the class on the end of the relationship is unimportant (e.g., a library class such as String or Date).

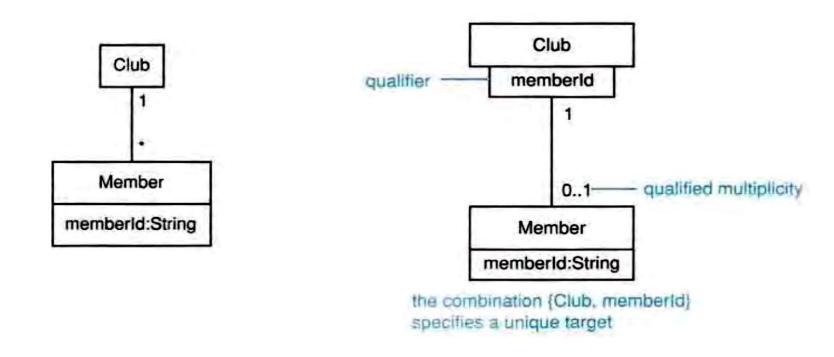
If a navigable relationship has a role name, then it is as though the source class has a pseudo-attribute with the same name as the role name and the same type as the target class



Department of Computer Engineering

Association Classes

- An association class is an association that is also a class:
 - □ it may have attributes, operations, and relationships;
 - you can use an association class when there is exactly one unique link between any pair of objects at any point in time;
 - if a pair of objects may have many links to each other at a given point in time, then you reify the relationship by replacing it with a normal class.



Department of Computer Engineering

Qualified Associations

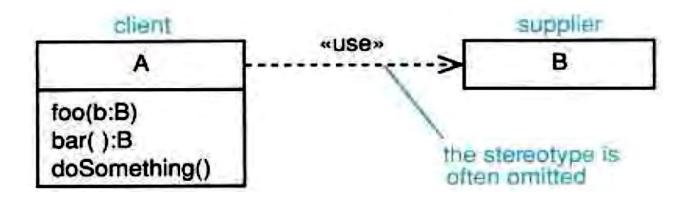
- Qualified associations use a qualifier to select a unique object from the target set:
 - □ the qualifier must be a unique key into the target set;
 - qualified associations reduce the multiplicity of n-to-many relationships, to nto-one;
 - □ they are a useful way of drawing attention to unique identifiers.

Department of Computer Engineering

Dependencies

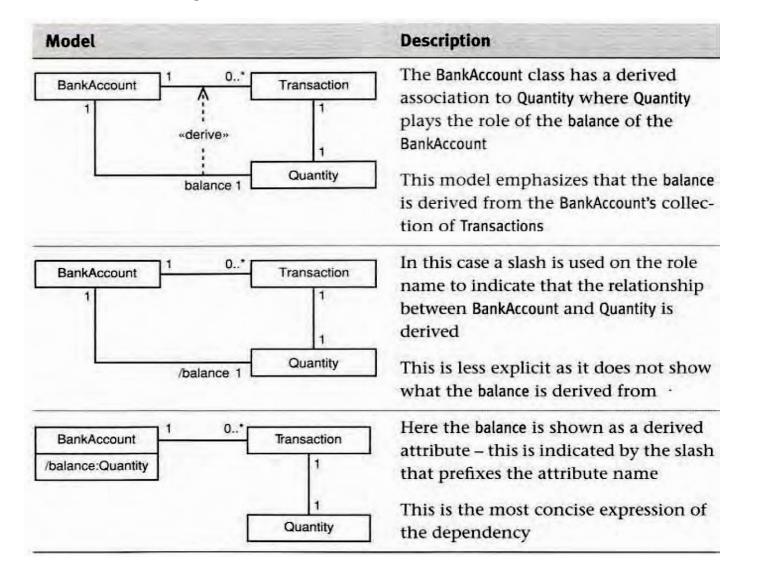
- Dependencies are relationships in which a change to the supplier affects or supplies information to the client.
- The client depends on the supplier in some way.
- Dependencies are drawn as a dashed arrow from client to supplier.

Туре	Semantics
Usage	The client uses some of the services made available by the supplier to implement its own behavior – this is the most commonly used type of dependency
Abstraction	This indicates a relationship between client and supplier, where the supplier is more abstract than the client.
	What do we mean by "more abstract"? This could mean that the supplier is at a different point in development than the client (e.g., in the analysis model rather than the design model)
Permission	The supplier grants some sort of permission for the client to access its contents – this is a way for the supplier to control and limit access to its contents


Dependencies: Example

Usage Dependencies

- «use»- the client makes use of the supplier in some way this is the catch-all and the default.
- «call»- the client operation invokes the supplier operation.
- «parameter»- the supplier is a parameter in one of the client's
 operations.
- send»- the client sends the supplier (which must be a signal) to the specified target.
- a winstantiate with the client instantiates the supplier.



Abstraction Dependencies

- «trace»- the client is a historical development of the supplier.
- «substitute»- the client can be substituted for the supplier at runtime.
- «refine»- the client is a version of the supplier.
- «instantiate»- the client is an instance of the supplier.
- «derive»- the client can be derived in some way from the supplier:
 - you may show derived relationships explicitly by using a «derive» dependency;
 - you may show derived relationships by prefixing the role or relationship name with a slash;
 - you may show derived attributes by prefixing the attribute name with a slash.

Abstraction Dependencies: «derive»

Department of Computer Engineering

Permission Dependencies

- «access»- a dependency between packages where the client package can access all of the public contents of the supplier package – the name spaces of the packages remain separate.
- «import»- a dependency between packages where the client package can access all of the public contents of the supplier package – the namespaces of the packages are merged.
- «permit»- a controlled violation of encapsulation where the client may access the private members of the supplier - this is not widely supported and should be avoided if possible.

Reference

Arlow, J., Neustadt, I., UML 2 and the Unified Process: Practical Object-Oriented Analysis and Design, 2nd Ed. Addison-Wesley, 2005.