
Department of Computer Engineering
1

Sharif University of Technology

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 8: Relationships



Object-Oriented Design – Lecture 8

Department of Computer Engineering
2

Sharif University of Technology

Analysis Workflow: Analyze a Use Case

 The analysis workflow consists of the following 
activities:

 Architectural analysis

 Analyze a use case

 Outputs: 
 analysis classes 

 use case realizations

 Analyze a class

 Analyze a package



Object-Oriented Design – Lecture 8

Department of Computer Engineering
3

Sharif University of Technology

Relationships: Links and Associations

 Relationships are semantic connections between 
things.

 Links are connections between objects.

 Associations are connections between classes.

 Links are instances of associations or dependencies.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
4

Sharif University of Technology

Links

 A link occurs when one object holds an object 
reference to another object.

 Objects realize system behavior by collaborating:

 collaboration occurs when objects send each other 
messages across links;

 when a message is received by an object, it executes 
the appropriate operation.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
5

Sharif University of Technology

Links and Object Diagrams

 Object diagrams show objects and their links at a particular point in time.
 They are snapshots of an executing OO system at a particular time.
 Objects may adopt roles with respect to each other - the role played by an 

object in a link defines the semantics of its part in the collaboration.
 N-ary links may connect more than two objects - they are drawn as a 

diamond with a path to each object but are not widely used.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
6

Sharif University of Technology

Associations

 Associations are semantic connections between classes.

 If there is a link between two objects, there must be an association 
or dependency between the classes of those objects.

 Links are instances of associations just as objects are instances of 
classes.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
7

Sharif University of Technology

Associations: Details

 Associations may optionally have the following:
 Association name

 Role names

 Multiplicity

 Navigability



Object-Oriented Design – Lecture 8

Department of Computer Engineering
8

Sharif University of Technology

Associations: Names and Roles

 Association name:
 may be prefixed or postfixed with a small black arrowhead to indicate the direction in 

which the name should be read;
 should be a verb or verb phrase;
 in lowerCamelCase.

 Role names:
 on one or both association ends;
 should be a noun or noun phrase describing the semantics of the role;
 in lowerCamelCase.

 Use either an association name or role names but not both.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
9

Sharif University of Technology

Associations: Multiplicity

 Indicates the number of objects that can be involved in the relationship at 
any point in time.

 Objects may come and go, but multiplicity constrains the number of 
objects in the relationship at any point in time.

 Multiplicity is specified by a comma-separated list of intervals, for example, 
0..1, 3..5.

 There is no default multiplicity - if multiplicity is not explicitly shown, then 
it is undecided.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
10

Sharif University of Technology

Associations: Multiplicity Syntax



Object-Oriented Design – Lecture 8

Department of Computer Engineering
11

Sharif University of Technology

Reflexive Associations



Object-Oriented Design – Lecture 8

Department of Computer Engineering
12

Sharif University of Technology

Reflexive Associations: Hierarchies and Networks



Object-Oriented Design – Lecture 8

Department of Computer Engineering
13

Sharif University of Technology

Associations: Navigability

 Shown by an arrowhead on one end of the relationship - if a relationship 
has no arrowheads, then it is bidirectional.

 Navigability indicates that you can traverse the relationship in the 
direction of the arrow.

 You may also be able to traverse back the other way, but it will be 
computationally expensive to do so.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
14

Sharif University of Technology

Associations and Attributes

 An association between two classes is equivalent to one class having a pseudo-
attribute that can hold a reference to an object of the other class:

 you can often use associations and attributes interchangeably;
 use association when you have an important class on the end of the 

association that you wish to emphasize;
 use attributes when the class on the end of the relationship is unimportant 

(e.g., a library class such as String or Date).



Object-Oriented Design – Lecture 8

Department of Computer Engineering
15

Sharif University of Technology

Association Classes

 An association class is an association that is also a class:
 it may have attributes, operations, and relationships;
 you can use an association class when there is exactly one unique link 

between any pair of objects at any point in time;
 if a pair of objects may have many links to each other at a given point in 

time, then you reify the relationship by replacing it with a normal class.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
16

Sharif University of Technology

Qualified Associations

 Qualified associations use a qualifier to select a unique object from the 
target set:

 the qualifier must be a unique key into the target set;
 qualified associations reduce the multiplicity of n-to-many relationships, to n-

to-one;
 they are a useful way of drawing attention to unique identifiers.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
17

Sharif University of Technology

Dependencies

 Dependencies are relationships in which a change to the supplier affects 
or supplies information to the client.

 The client depends on the supplier in some way.
 Dependencies are drawn as a dashed arrow from client to supplier.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
18

Sharif University of Technology

Dependencies: Example



Object-Oriented Design – Lecture 8

Department of Computer Engineering
19

Sharif University of Technology

Usage Dependencies

 «use»- the client makes use of the supplier in some way - this is 
the catch-all and the default.

 «call»- the client operation invokes the supplier operation.
 «parameter»- the supplier is a parameter in one of the client's 

operations.
 «send»- the client sends the supplier (which must be a signal) to 

the specified target.
 «instantiate»- the client instantiates the supplier.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
20

Sharif University of Technology

Abstraction Dependencies

 «trace»- the client is a historical development of the supplier.

 «substitute»- the client can be substituted for the supplier at 
runtime.

 «refine»- the client is a version of the supplier.

 «instantiate»- the client is an instance of the supplier.

 «derive»- the client can be derived in some way from the 
supplier:

 you may show derived relationships explicitly by using a «derive» 
dependency;

 you may show derived relationships by prefixing the role or 
relationship name with a slash;

 you may show derived attributes by prefixing the attribute name 
with a slash.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
21

Sharif University of Technology

Abstraction Dependencies: «derive»



Object-Oriented Design – Lecture 8

Department of Computer Engineering
22

Sharif University of Technology

Permission Dependencies

 «access»- a dependency between packages where the client 
package can access all of the public contents of the supplier 
package – the name spaces of the packages remain separate.

 «import»- a dependency between packages where the client 
package can access all of the public contents of the supplier 
package – the namespaces of the packages are merged.

 «permit»- a controlled violation of encapsulation where the client 
may access the private members of the supplier - this is not widely 
supported and should be avoided if possible.



Object-Oriented Design – Lecture 8

Department of Computer Engineering
23

Sharif University of Technology

Reference

 Arlow, J., Neustadt, I., UML 2 and the Unified Process: Practical 
Object-Oriented Analysis and Design, 2nd Ed. Addison-Wesley, 
2005.


