Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 5: Use Case Modeling
Part 2

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 5

Activities of requirements workflow

Capture Functional Requirements

1. Find actors and use cases
2. Prioritize use cases

3. Detall use cases

4. Prototype user interface

5. Structure the use-case model/

Department of Computer Engineering Sharif University of Technology

u Object-Oriented Design — Lecture 5

Relationships

m actor generalization - a generalization relationship
between a more general actor and a more specific
actor

m yse case generalization - a generalization relationship
between a more general use case and a more specific
use case

m <«/ncludex» - a relationship between use cases that lets
one use case include behavior from another

m «extend» - a relationship between use cases that lets
one use case extend its behavior with one or more
behavior fragments from another

Department of Computer Engineering Sharif University of Technology

u Object-Oriented Design — Lecture 5

Actor Generalization

m If two actors communicate with the same set of use
cases in the same way, we can express this as a
generalization to another (possibly abstract) actor.

Sales system

ancestor or parent

Sales system

CalculateCommission

ListProducts abstract actor =
// M ListProducts
generalization \
Customer OrderProducts Purchaser
\ OrderProducts
AcceptPayment : i
/ We-qan sknpliy AcceptPayment
with actor

———] generalization!

SalesAgent CalculateCommission

Customer

SalesAgent

descendants or children

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 5

Use Case Generalization

m Used when one or more use cases are really specializations of a
more general case.
m Child use cases may:
inherit features from their parent use case

add new features

override (change) inherited features (except for inherited
relationships and extension points)

m Ideally, parent use cases should be abstract.
Abstract use cases have a missing flow of events.

They provide a summary of the high-level behavior that their
children will be expected to implement.

%_

Customer

Sales system

FindProduct

FindBook

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 5

Use Case Generalization: Features

Use case feature Inherit Add Overside
Relationship v v S
Extension point it o Y“ e v e =
Drecor o ;,_ - Y :
Postcondition Y Y” E -
Alternative flow y > Y &

Department of Computer Engineering Sharif University of Technology

L Object-Oriented Design — Lecture 5

Use Case Generalization: Example

Sales system

FindProduct

Customer
FindBook
Use case: FindProduct
ID: 6
Brief description:
The Customer searches for a product.
Primary actors:
Customer
Secondary actors:
None.
Preconditions:
None.
Main flow:
1. The Customer selects "find product".
2. The system asks the Customer for search criteria.
3. The Customer enters the requested criteria.
4. The system searches for products that match the Customer's criteria.
5. If the system finds some matching products

5.1 The system displays a list of the matching products.
Else

o

6.1 The system tells the Customer that no matching products could be found.

Postconditions:
None.

Alternative flows:
None.

Department of Computer Engineering

overridden
overridden

inherited without change
overridden

overridden

added

overridden and renumbered
added

added

inherited without change
added
renumbered

Use case: FindBook

ID:7

Parent ID: 6

Brief description:
The Customer searches for a book.

Primary actors:
Customer

Secondary actors:
None.

Preconditions:
None.

Main flow:
1. (01.) The Customer selects "find book".
2. (02.) The system asks the Customer for book search criteria comprising author,
title, ISBN, or topic.
3. (3.) The Customer enters the requested criteria.
4. (04.) The system searches for books that match the Customer's criteria.
5. (05.) If the system finds some matching books
5.1 The system displays the current best seller.
5.2 (05.1) The system displays details of a maximum of five books.
5.8 For each book on the page the system displays the title, author, price, and ISBN.
5.4 While there are more books, the system gives the Customer the option to display
the next page of books.
6. (6.) Else
6.1 The system displays the current best seller.
6.2 (6.1) The system tells the Customer that no matching products could be found.

Postconditions:
None.

Alternative flows:
None.

Sharif University of Technology

-
«include» Relationship

m The «include» relationship between use cases allows
you to include the behavior of one use case into the flow
of another use case.

Personnel system

ChangeEmployeeDetails _ o
~‘~."’f)¢, inclusion
Yo, use case
. . «<include» _> _
ViewEmployeeDetails)------=-==--- > FindEmployeeDetails
Manage\ i '\'\;69”
A\

DeleteEmployeeDetails \ —_
nciuae

relationship

Department of Computer Engineering Sharif University of Technology

u Object-Oriented Design — Lecture 5

«include» Relationship: Specification

m The base use case is not complete without all of its inclusion use cases.

m Inclusion use cases may be complete (/nstantiable) or incomplete (behavior
fragments)

Use case:ChangeEmployeeDetails

ID: 1 Use case: FindEmployeeDetails
Brief description: ID: 4
The Manager changes the employee details. Brief description:
Primary actors: The Manager finds the employee details.
Manager Primary actors:
Secondary actors: Manager
None. Secondary actors:
None.

Preconditions:
1. The Manager is logged on to the system. Preconditions:
1. The Manager is logged on to the system.

Main flow:

1. include(FindEmployeeDetails). Main flow:

2. The system displays the employee details. 1. The Manager enters the employee's ID.

3. The Manager changes the employee details. 2. The system finds the employee details.
Postconditions:

Postconditions: 1. The system has found the employee details.

1. The employee details have been changed. Alternative flows:

Alternative flows: None.

None.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 5

«extend» Relationship

m provides a way to insert new behavior into an existing
use case.

m The base use caseis a complete use case and provides
a set of extension points that are hooks where new
behavior may be added.

m The extension use case provides a set of /nsertion
segments that can be inserted into the base use case at

these hooks.

m The relationship can specify exactly which extension
points in the base use case are being extended.

Department of Computer Engineering Sharif University of Technology

10

L Object-Oriented Design — Lecture 5

«extend» Relationship: Example

pase

use case Library system

e

extension
“ "e*,e use case

_— T v
i \ Borrow book \\ T

\
Librarian avian
Find book sl
relationship

Department of Computer Engineering

Return book

Sharif University of Technology

Object-Oriented Design — Lecture 5

«extend» Relationship: Extension Points

base use case

extension points
overdueBook

extension point: overdueBooa
v

/ «extend»

extension
point name

Department of Computer Engineering

\

extension
point

Use case: ReturnBook

ID: 9

Brief description:
The Librarian returns a borrowed book.

Primary actors:
Librarian

Secondary actors:
None.

Preconditions:
1. The Librarian is logged on to the system.

\\

Main flow:

1. The Librarian enters the borrower's ID number.

2. The system displays the borrower's details including the
list of borrowed books.

3. The Librarian finds the book to be returned in the list of
books.

extension point: overdueBook

4. The Librarian returns the book.

Postconditions:
1. The book has been returned.

Alternative flows:
None.

12

Sharif University of Technology

u Object-Oriented Design — Lecture 5

«extend» Relationship: Extension Use Cases

m Are not complete use cases and therefore can't be
instantiated.

m Normally consist of one or more behavior fragments
known as insertion segments.

m The «extend» relationship specifies the extension point

in the base use case where the insertion segment will be
inserted.

Department of Computer Engineering 13 Sharif University of Technology

u Object-Oriented Design — Lecture 5

VN
==,
N,

Extension Use Case: Single-Segment Example

ReturnBook

o'!
[}

Extension Use case: IssueFine

extension points
overdueBook

extension point: overdueBooﬁ -------- "

// «extend»

the single insertion segment :
n IssueFineis inserted at the X
overdueBookinsertion point :
n the ReturnBook use case :

Department of Computer Engineering

ID: 10

Brief description:
Segment 1: The Librarian records and prints out a fine.

Primary actors:
Librarian

Secondary actors:
None.

Segment 1 preconditions:
1. The returned book is overdue.

Segment 1 flow:
1. The Librarian enters details of the fine into the system.
2. The system prints out the fine.

Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

14

Sharif University of Technology

u Object-Oriented Design — Lecture 5

Extension Use Case: Multiple-Segment Example

Extension Use case: IssueFine

ID: 10

Brief description:
Segment 1: The Librarian records and prints out a fine.
Segment 2: The Librarian accepts payment for a fine.

Primary actors:
ReturnBook Librarian

extension points Secondary actors:
overdueBook None.
payFine Segment 1 preconditions:
1. The returned book is overdue.

Segment 1 flow:
extension points: overdueBook, payFine [===~~~ ' 1. The Librarian enters details of the fine into the system.

' 2. The system prints out the fine.
«extend»

Segment 1 postconditions:
1. The fine has been recorded in the system.
2. The system has printed out the fine.

Segment 2 preconditions:
1. Afine is due from the borrower.

Segment 2 flow:

1. The Librarian accepts payment for the fine from the borrower.
2. The Librarian enters the paid fine in the system.

3. The system prints out a receipt for the paid fine.

IssueFine

Segment 2 postconditions:
1. The fine is recorded as paid.
2. The system has printed a receipt for the fine.

Department of Computer Engineering i5 Sharif University of Technology

u Object-Oriented Design — Lecture 5

«extend» Relationship: Rules

m The «extend» relationship must specify one or more of
the extension points in the base use case or it is
assumed that the «extend» relationship refers to a//
extension points.

m The extension use case must have the same number of
insertion segments as there are extension points
specified in the «extend» relationship.

m [t is legal for two extension use cases to «extend» the
same base use case at the same extension point. But if
this happens, the order in which the extensions execute
is indeterminate.

Department of Computer Engineering 16 Sharif University of Technology

Object-Oriented Design — Lecture 5

Use Case Modeling: Hints and Tips - 1

1. Keep use cases short and simple

Include only enough detail to capture the
requirements.

A good rule of thumb is to ensure that the main
flow of a use case fits on a single side of paper.
s Start by simplifying the text
s Remove any design details

s Reanalyze the problem: Are there more than
one use case? Can alternative flows be

factored out?

Department of Computer Engineering Sharif University of Technology

17

u Object-Oriented Design — Lecture 5

Use Case Modeling: Hints and Tips - 2

2. Focus on the what not the how

Use cases should show what the actors need the system
to do, not Aow the system should do it. The how comes
later in the design workflow.

= Example:
4. The system asks the Customer to confirm the order.
5. The Customer presses the OK button.

m Some sort of user interface has been imagined: a form with an
OK button.

m Better be written as:

5. The Customer accepts the order.

Department of Computer Engineering Sharif University of Technology

18

u Object-Oriented Design — Lecture 5

Use Case Modeling: Hints and Tips - 3

3. Avoid functional decomposition

- Functional Decomposition in Use Case Modeling:
creating a set of "high level" use cases, and then
breaking these down into a set of lower-level use
cases and so on, until "primitive" use cases are
reached that are detailed enough to be
implemented.

Department of Computer Engineering 19 Sharif University of Technology

Object-Oriented Design — Lecture 5

Functional Decomposition in Use Case Modeling: Example

Librarian

LibrarySystem

avoid functional
decomposition

«include»

-
-—.
-

P AddTicket
indyde»"3(" peleteTicket

«include» "~ ReturnBook

AddBook
D eleteBook

B>

Department of Computer Engineering

20

Sharif University of Technology

u Object-Oriented Design — Lecture 5

Reference

m Arlow, J., Neustadt, I., UML 2 and the Unified Process:
Practical Ob]ect-Or/ented Analysis and Design, 2™ Ed.
Addison-Wesley, 2005.

Department of Computer Engineering Sharif University of Technology

21

