
Department of Computer Engineering
1

Sharif University of Technology

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 4: Use Case Modeling

Part 1



Object-Oriented Design – Lecture 4

Department of Computer Engineering
2

Sharif University of Technology

Four Steps of requirements capture

1. List candidate requirements

2. Understand system context

3. Capture functional requirements

4. Capture nonfunctional requirements



Object-Oriented Design – Lecture 4

Department of Computer Engineering
3

Sharif University of Technology

Activities of requirements workflow

Capture Functional Requirements

1. Find actors and use cases

2. Prioritize use cases

3. Detail use cases

4. Prototype user interface

5. Structure the use-case model



Object-Oriented Design – Lecture 4

Department of Computer Engineering
4

Sharif University of Technology

Use case modeling

 Use case modeling typically proceeds as follows:

 Find a candidate system boundary; You 
generally begin with some initial estimate of 
where the system boundary lies, to help you 
scope the modeling activity.

 Find the actors.

 Find the use cases:

 specify the use case;

 identify key alternative flows.

 Iterate until use cases, actors, and system 
boundary are stable.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
5

Sharif University of Technology

Use Case Model

 Four components:
 System boundary - a box drawn around the use 

cases to denote the edge or boundary of the system 
being modeled. This is known as the subject in 
UML2.

 Actors - roles played by people or things that use 
the system.

 Use cases - things that the actors can do with the 
system.

 Relationships - meaningful relationships between 
actors and use cases.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
6

Sharif University of Technology

The subject (system boundary)

 The subject is defined by who or what uses the system 
(i.e., the actors) and what specific benefits the system 
offers to those actors (i.e., the use cases).

 The subject is drawn as a box, labeled with the name 
of the system

 The actors are drawn outside the boundary and the use 
cases inside.

 Use case modeling starts with only a tentative idea of 
where the subject actually lies. 

 As actors and use cases are found, the subject 
becomes more and more sharply defined.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
7

Sharif University of Technology

Actors

 An actor specifies a role that some external 
entity adopts when interacting with the system 
directly. 

 It may represent a role played by: 

 a user 

 another system

 a piece of hardware

 In UML 2, actors may also represent other 
subjects, giving a way to link different use case 
models.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
8

Sharif University of Technology

Actors: Notation

 Can be shown as a class icon stereotyped «actor» or as the "stick 
man" actor icon. 

 “Stick-man" form usually used to represent roles that are likely to 
be played by people, and the class icon form to represent roles 
likely to be played by other systems.

Accounting



Object-Oriented Design – Lecture 4

Department of Computer Engineering
9

Sharif University of Technology

Actors: Important Notes

 Although actors themselves are always external to the 
system, systems often maintain some internal 
representation of one or more actors.

 Time as an actor:
 When you need to model things that happen to your system at 

a specific point in time but which don't seem to be triggered 
by any actor; e.g. an automatic system backup that runs every 
evening.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
10

Sharif University of Technology

Identifying Actors

 Need to consider who or what uses the system, and 
what roles they play in their interactions with the 
system. 

 Asking the following questions helps identify actors:

 Who or what uses the system?

 What roles do they play in the interaction?

 Who installs the system?

 Who or what starts and shuts down the system?

 Who maintains the system?

 What other systems interact with this system?

 Who or what gets and provides information to the system?

 Does anything happen at a fixed time?



Object-Oriented Design – Lecture 4

Department of Computer Engineering
11

Sharif University of Technology

Actors: Specification

 Each actor needs a short name that makes sense from 
the business perspective.

 Each actor must have a short description (one or two 
lines) that describes what this actor is from a business 
perspective.

Actor name: Order Processing Clerk

Description: The Order Processing Clerk is responsible for 
processing sales orders, submitting reorder requests, requesting 
necessary deposits from members and scheduling the delivery of 
the goods to members.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
12

Sharif University of Technology

Use Case

 "A specification of sequences of actions, 
including variant sequences and error 
sequences, that a system, subsystem or class 
can perform by interacting with outside 
actors."

 Always started by an actor.
 Always written from the point of view of the 

actors.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
13

Sharif University of Technology

Identifying Use Cases

 The best way of identifying use cases is to start with 
the list of actors, and then consider how each actor is 
going to use the system. 

 Each use case must be given a short, descriptive name 
that is a verb phrase.

 Identifying use cases may also result in finding new 
actors.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
14

Sharif University of Technology

Identifying Use Cases: Helpful Questions

 The following list of questions helps identify the use 
cases:

 What functions will a specific actor want from the system?

 Does the system store and retrieve information? If so, which 
actors trigger this behavior?

 What happens when the system changes state (e.g., system 
start and stop)? Are any actors notified?

 Do any external events affect the system? What notifies the 
system about those events?

 Does the system interact with any external system?

 Does the system generate any reports?



Object-Oriented Design – Lecture 4

Department of Computer Engineering
15

Sharif University of Technology

Use Case Diagram



Object-Oriented Design – Lecture 4

Department of Computer Engineering
16

Sharif University of Technology

Project Glossary

 The glossary provides a dictionary of key business 
terms and definitions. 

 It should be understandable by everyone in the 
project, including all the stakeholders.

 As well as defining key terms, the project glossary 
must resolve synonyms and homonyms.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
17

Sharif University of Technology

Project Glossary: Example



Object-Oriented Design – Lecture 4

Department of Computer Engineering
18

Sharif University of Technology

Activities of requirements workflow

Capture Functional Requirements

1. Find actors and use cases

2. Prioritize use cases

3. Detail use cases

4. Prototype user interface

5. Structure the use-case model



Object-Oriented Design – Lecture 4

Department of Computer Engineering
19

Sharif University of Technology

Use Case Specification: Template

 use case name - short, descriptive verb phrase in UpperCamelCase;

 use case ID - alternative routes are specified by using Dewey-decimal 
numbering;

 brief description - a paragraph that captures the goal of the use case;

 actors involved in the use case;

 primary actors - actually trigger the use case;

 secondary actors - interact with the use case after it has been 
triggered.

 preconditions - these are things that must be true before the use case 
can execute - they are constraints on the state of the system;

 main flow - the steps in the use case;

 postconditions - things that must be true at the end of the use case;

 alternative flows - a list of alternatives to the main flow.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
20

Sharif University of Technology

Use Case Specification: Example



Object-Oriented Design – Lecture 4

Department of Computer Engineering
21

Sharif University of Technology

Use Case: Flows

 The steps in a use case are listed in flows of events, described in 
structured language. 

 Every use case has one main flow (Primary Scenario), which lists 
the steps in a use case that capture the situation where 
everything goes as expected and desired.

 Alternative flows (Secondary Scenarios) are deviations from the 
main flow, and can capture errors, branches, and interrupts to 
the main flow. 

 The main flow always begins by the primary actor doing 
something to trigger the use case. Time can be an actor, so the 
use case may also start with a time expression in place of the 
actor.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
22

Sharif University of Technology

Use Case: Flow Description



Object-Oriented Design – Lecture 4

Department of Computer Engineering
23

Sharif University of Technology

Use Case: Alternative Flows

 Do not return to the main flow; because they often deal 
with errors and exceptions to the main flow and tend to 
have different postconditions.

 Should preferably be documented separately.

 May be triggered in three different ways, which should 
be stated in their flow descriptions:
 instead of the main flow: triggered by the primary actor, it 

effectively replaces the use case entirely.

 after a particular step in the main flow

 at any time during the main flow



Object-Oriented Design – Lecture 4

Department of Computer Engineering
24

Sharif University of Technology

Use Case: Alternative Flow Example



Object-Oriented Design – Lecture 4

Department of Computer Engineering
25

Sharif University of Technology

Use Case: Finding Alternative Flows

 Identify alternative flows by inspecting the main 
flow. At each step in the main flow, look for:

 possible alternatives to the main flow;

 errors that might be raised in the main flow;

 interrupts that might occur at a particular point in 
the main flow;

 interrupts that might occur at any point in the main 
flow.



Object-Oriented Design – Lecture 4

Department of Computer Engineering
26

Sharif University of Technology

Reference

 Arlow, J., Neustadt, I., UML 2 and the Unified Process: 
Practical Object-Oriented Analysis and Design, 2nd Ed. 
Addison-Wesley, 2005.


