
Department of Computer Engineering
1

Sharif University of Technology

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 21

GoF Design Patterns – Structural

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
2

Sharif University of Technology

GoF Structural Patterns

 Class/Object

 Adapter: Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

 Object

 Bridge: Decouple an abstraction from its implementation so that the two
can vary independently.

 Composite: Compose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

 Decorator: Attach additional responsibilities to an object dynamically.

 Façade: Provide a unified interface to a set of interfaces in a subsystem.

 Flyweight: Use sharing to support large numbers of fine-grained objects
efficiently.

 Proxy: Provide a surrogate or placeholder for another object to control
access to it.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
3

Sharif University of Technology

Adapter

 Intent:
 Convert the interface of a class into another interface clients expect. Adapter

lets classes work together that couldn't otherwise because of incompatible
interfaces.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
4

Sharif University of Technology

Adapter: Applicability

 Use the Adapter pattern when

 you want to use an existing class, and its interface does not match the one
you need.

 you want to create a reusable class that cooperates with unrelated or
unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

 (object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
5

Sharif University of Technology

Adapter (Class): Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
6

Sharif University of Technology

Adapter (Object): Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
7

Sharif University of Technology

Bridge

 Intent:
 Decouple an abstraction from its implementation so that the two can vary

independently.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
8

Sharif University of Technology

Bridge: Applicability

 Use the Bridge pattern when

 you want to avoid a permanent binding between an abstraction and
its implementation; for example, when the implementation must be
selected or switched at run-time.

 both the abstractions and their implementations should be extensible
by subclassing; combine different abstractions and implementations
and extend them independently.

 changes in the implementation of an abstraction should have no
impact on clients; that is, their code should not have to be
recompiled.

 (C++) you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is
visible in the class interface.

 you want to share an implementation among multiple objects and
this fact should be hidden from the client.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
9

Sharif University of Technology

Bridge: Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
10

Sharif University of Technology

Composite

 Intent:
 Compose objects into tree structures to represent part-whole hierarchies.

Composite lets clients treat individual objects and compositions of objects
uniformly.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
11

Sharif University of Technology

Composite: Applicability

 Use the Composite pattern when

 you want to represent whole-part- hierarchies of objects.

 you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat all
objects in the composite structure uniformly.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
12

Sharif University of Technology

Composite: Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
13

Sharif University of Technology

Composite: Typical Object Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
14

Sharif University of Technology

Decorator

 Intent:
 Attach additional responsibilities to an object dynamically. Decorators provide

a flexible alternative to subclassing for extending functionality.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
15

Sharif University of Technology

Decorator: Class Hierarchy

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
16

Sharif University of Technology

Decorator: Applicability

 Use the Decorator pattern

 to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

 for responsibilities that can be withdrawn.

 when extension by subclassing is impractical. Sometimes a large
number of independent extensions are possible and would produce
an explosion of subclasses.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
17

Sharif University of Technology

Decorator: Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
18

Sharif University of Technology

Façade

 Intent:
 Provide a unified interface to a set of interfaces in a subsystem.

Facade defines a higher-level interface that makes the subsystem
easier to use.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
19

Sharif University of Technology

Façade: Class Hierarchy

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
20

Sharif University of Technology

Façade: Applicability

 Use the Façade pattern when

 you want to provide a simple interface to a complex subsystem.

 there are many dependencies between clients and the
implementation classes of an abstraction.

 you want to layer your subsystems. Use a facade to define an entry
point to each subsystem level.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
21

Sharif University of Technology

Proxy

 Intent:
 Provide a surrogate or placeholder for another object to control

access to it.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
22

Sharif University of Technology

Proxy: Class Hierarchy

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
23

Sharif University of Technology

Proxy: Applicability

 Use the Proxy pattern when a surrogate is needed:

 Remote proxy: provides a local representative for an object in a
different address space.

 Virtual proxy: creates expensive objects on demand.

 Protection proxy: controls access to the original object.

 Smart reference: a replacement for a bare pointer that performs
additional actions when an object is accessed:

 counting the number of references to the real object so that it can
be freed when there are no more references.

 loading a persistent object into memory when it's first referenced.

 checking that the real object is locked before it's accessed to
ensure that no other object can change it.

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
24

Sharif University of Technology

Proxy: Structure

 Object-Oriented Design – Lecture 21

Department of Computer Engineering
25

Sharif University of Technology

Reference

 Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns: Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

