Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 21

GoF Design Patterns — Structural

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21 @;}
~rnf

GoF Structural Patterns

m Class/Object

Adapter: Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

m Object

Bridge: Decouple an abstraction from its implementation so that the two
can vary independently.

Composite: Compose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically.
Facade: Provide a unified interface to a set of interfaces in a subsystem.

Flyweight: Use sharing to support large numbers of fine-grained objects
efficiently.

Proxy: Provide a surrogate or placeholder for another object to control
access to it.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21

Adapter

m Intent:

i

Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn't otherwise because of incompatible

interfaces.
DrawingEditor S Shape
BoundingBox{)
CreateManipulatory()

A

— TextView

GelExtent()

Line

BoundingBox()

CreateManipulator()

TextShape

Department of Computer Engineering

BoundingBox() o=
CreateManipulator() ©-

---------- retum text->GetExtent() H

-==- retum new TextManipulator |

Sharif University of Technology

Object-Oriented Design — Lecture 21 @;}
~rnS

Adapter: Applicability

m Use the Adapter pattern when

you want to use an existing class, and its interface does not match the one
you heed.

you want to create a reusable class that cooperates with unrelated or

unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

(object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21

Adapter (Class): Structure

Department of Computer Engineering

Client IJ Target

Request(}

A

Adaptee

SpecificRequest()

A

(implementation)

Adapter

Request() - ~~—-—=———1 SpecificRequest()

=]

Sharif University of Technology

Object-Oriented Design — Lecture 21

Adapter (Object): Structure

Client

Department of Computer Engineering

Target — = Adaptee
Request() SpecificRequest()
adaplee
Adapter
Heguasil) O === adaptee—>SpecificRequest() ﬁ

Sharif University of Technology

Object-Oriented Design — Lecture 21

Bridge

m Intent:
1 Decouple an abstraction from its implementation so that the two can vary
independently.

imp

Window > ™ Windowlmp
DrawText() DevDrawText()
DrawRect() o- i DevDrawline()
[!
|
] imp—>DevDrawLIne(}
.| imp-=DevDrawLine(
imp—>DevDrawLIm38
imp->DevDrawline
/N Via
l l I l
iconWindow TransientWindow XWindowimp PMWindowlmp
DrawBorder() ¢ DrawCloseBox{} ¢ DevDrawText() O ==1 | DevDrawLine()
; ; DevDrawLine{) ¢ E DevDrawText()
I | R
! - & I
DrawRect() 1
DrawText() H DrawRect() XDrawline() XDrawStrlng(H

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21 @@
~rnf

Bridge: Applicabllity

m Use the Bridge pattern when

you want to avoid a fpermanent binding between an abstraction and
Its implementation; for example, when the implementation must be
selected or switched at run-time.

both the abstractions and their implementations should be extensible
by subclassing; combine different abstractions and implementations
and extend them independently.

changes in the implementation of an abstraction should have no
impact on clients; that is, their code should not have to be
recompiled.

(C++? you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is
visible in the class interface.

you want to share an implementation among multiple objects and
this fact should be hidden from the client.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21

Bridge: Structure

im
! Abstraction l<.'> B '-l- Implementor
Operation{} @ Operationimp()
o imp—::Operationlmpﬁ
I I
: ConcretelmplementorA ConcretelmpiementorB
RefinedAbstraction
Operationimp() Operationimp()
Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 21

Composite

m Intent:

i

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects

forall g in graphics
g.Draw?) H

uniformly.
Graphic b
Draw()
Add(Graphic)
Remove(Graphic)
GetChild(int)
I | I I graphics
Line Rectangle Text Picture K>
Draw() Draw() Draw() Daw() O P e T T T
Add(Graphicg) C[————-- !
Remove(Graphic) !
GetChikd(int) i

Department of Computer Engineering

add g to list of graphics ﬂ

10

Sharif University of Technology

Object-Oriented Design — Lecture 21 @j
~ant

Composite: Applicability

m Use the Composite pattern when

you want to represent whole-part- hierarchies of objects.

you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat all
objects in the composite structure uniformly.

Department of Computer Engineering Sharif University of Technology

11

Object-Oriented Design — Lecture 21

Composite: Structure

Client

-I Component

o

Operation(}

GetChild{int)

Add{Component)
Remove{Component)

A

Leaf

Operation()

Department of Computer Engineering

Composite

children

Operation{) &------
Add{Component)
Remove(Component)
GetChild(int)

___________ forall g in children
g.Operation();

12

Sharif University of Technology

Object-Oriented Design — Lecture 21

Composite: Typical Object Structure

aComposite

aComposote

Department of Computer Engineering 13 Sharif University of Technology

Object-Oriented Design — Lecture 21

Decorator

m Intent:

1 Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality.

Banm applealions woukd bersd|

°
lrem using obpecis o rodel sy
aBorderDecorator sepect of her funchanyity but
B N design sporosch would by

probiteiivsly sapucsve

For sxarmpls, mosl dosurent so-
Poes modularos fr sl o msl-
g ard aching mcibeas 1p somes
aulunl Homess, 1y rwarsbly
00 shott of Usng obyscss o
rapreannl anch chumoks and
graphlical sumanl it oo imess
Durg 80 woukd promess Teubdily
Al e Tewal bl) 1
npphoanon Texl and graphes
could by rmateg uniionmy wih

¢[| | | &

aScrollDecorator

aTextView

¢l

(aBordetDecorator\‘

aScrouDeoorator_\
L\component * aTextView W
component ® ~ J

Sharif University of Technology

Department of Computer Engineering 14

Object-Oriented Design — Lecture 21

Decorator: Class Hierarchy

VisualComponent &

Drawy()
I I component
TextView Decorator
Draw() Draw() ©--q--—-—-—----—-
I I

ScrollDecorator BorderDecorator
Draw() Draw() O-------
ScroliTo() DrawBorder{)
scroliPosition borderWidth

component—>Draw() H

Decorator::Draw(};
DrawBorder();

1

Department of Computer Engineering

15

Sharif University of Technology

Object-Oriented Design — Lecture 21 @;}
~rnS

Decorator: Applicabllity

m Use the Decorator pattern

to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

for responsibilities that can be withdrawn.

when extension by subclassing is impractical. Sometimes a large
number of independent extensions are possible and would produce
an explosion of subclasses.

Department of Computer Engineering 16 Sharif University of Technology

Object-Oriented Design — Lecture 21

Decorator: Structure

Component I.
Operationy{)
| | com
ponent
ConcreteComponent Decorator
Operation() I R S 5 B T e i i component—:’Operation()H
l I
ConcreteDecoratorA ConcreteDecoratorB
¢ R Decorator::Operation();
Operation() Operationf) O-==ormemgemmmmee AddedBehavior(): 0 ﬂ
AddedBehavior()
addedState

Department of Computer Engineering Sharif University of Technology

17

Object-Oriented Design — Lecture 21

i

Facade

m Intent:

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.

client classes

1\~

S =k
_\/
subsystem classes / / =

Department of Computer Engineering Sharif University of Technology

18

Object-Oriented Design — Lecture 21

Facade: Class Hierarchy

Stream

;

—s BytecodeStream

Compiler

Compile{)

CodeGenerator]‘ -——

T

T

L}
1
I
1
1
1
1
-~ Scanner

- — — Token

ll———

- - - -]

=== = Parser

Symbol

-

- # ProgramNodeBuilder

-= --I ProgramNode

A

|

StatementNode

StackMachineCodeGenerator

RISCCodeGenerator

Department of Computer Engineering

19

ExpressionNode

VariableNode

Sharif University of Technology

Object-Oriented Design — Lecture 21 @j
~ant

Facade: Applicability

m Use the Facade pattern when

you want to provide a simple interface to a complex subsystem.

there are many dependencies between clients and the
implementation classes of an abstraction.

you want to layer your subsystems. Use a facade to define an entry
point to each subsystem level.

Department of Computer Engineering 20 Sharif University of Technology

Object-Oriented Design — Lecture 21

i

Proxy

m Intent:
Provide a surrogate or placeholder for another object to control
access to It.
(_ aTextDocument)
L\image ® :Z:::Pm_xi__j_ _____ animage w
I w» dakn _J
in memory on disk

Department of Computer Engineering Sharif University of Technology

21

Object-Oriented Design — Lecture 21

Proxy: Class Hierarchy

if (image == 0) {
image = Loadimage(fileName),

mage->Draw()

~

DocumentEditor - Graphic
Draw()
GetExtent{)
Storey)
Load()
Image = |lg--------| ImageProxy
Draw() image| praw() o-
GetExtent() GelExteny{) O
Store{) Store()
Load() Load()
imageimp fileName
extent extent

if (image == 0) {
return extent;

} else {

return image-=GetExtent();

=

Department of Computer Engineering

22

Sharif University of Technology

Object-Oriented Design — Lecture 21 @;}
~rnf

Proxy: Applicability

m Use the Proxy pattern when a surrogate is needed:

Remote proxy: provides a local representative for an object in a
different address space.

Virtual proxy: creates expensive objects on demand.
Protection proxy: controls access to the original object.

Smart reference: a replacement for a bare pointer that performs
additional actions when an object is accessed:

m counting the number of references to the real object so that it can
be freed when there are no more references.

= loading a persistent object into memory when it's first referenced.

s checking that the real object is locked before it's accessed to
ensure that no other object can change it.

Department of Computer Engineering Sharif University of Technology

23

Object-Oriented Design — Lecture 21

Proxy: Structure

Cifent = Subject
Request()
RealSubject | reaiSubject Proxy
Request() Request() o f--------- ‘r'éaISubiect—>Flequest(): 1
(" aCiient L -
k subject . aProxy
- realSubject

Department of Computer Engineering

24

{anealsmajec: j

Sharif University of Technology

Object-Oriented Design — Lecture 21

i

Reference

m Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns. Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

Department of Computer Engineering 75 Sharif University of Technology

