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GoF Structural Patterns

m Class/Object

Adapter: Convert the interface of a class into another interface clients
expect. Adapter lets classes work together that couldn't otherwise because of
incompatible interfaces.

m Object

Bridge: Decouple an abstraction from its implementation so that the two
can vary independently.

Composite: Compose objects into tree structures to represent whole-part
hierarchies. Composite lets clients treat individual objects and compositions
of objects uniformly.

Decorator: Attach additional responsibilities to an object dynamically.
Facade: Provide a unified interface to a set of interfaces in a subsystem.

Flyweight: Use sharing to support large numbers of fine-grained objects
efficiently.

Proxy: Provide a surrogate or placeholder for another object to control
access to it.
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Adapter

m Intent:

i

Convert the interface of a class into another interface clients expect. Adapter
lets classes work together that couldn't otherwise because of incompatible

interfaces.
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Adapter: Applicability

m Use the Adapter pattern when

you want to use an existing class, and its interface does not match the one
you heed.

you want to create a reusable class that cooperates with unrelated or

unforeseen classes, that is, classes that don't necessarily have compatible
interfaces.

(object adapter only) you need to use several existing subclasses, but it's
impractical to adapt their interface by subclassing every one. An object
adapter can adapt the interface of its parent class.
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Adapter (Class): Structure
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Adapter (Object): Structure

Client
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Bridge

m Intent:
1 Decouple an abstraction from its implementation so that the two can vary
independently.
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Bridge: Applicabllity

m Use the Bridge pattern when

you want to avoid a fpermanent binding between an abstraction and
Its implementation; for example, when the implementation must be
selected or switched at run-time.

both the abstractions and their implementations should be extensible
by subclassing; combine different abstractions and implementations
and extend them independently.

changes in the implementation of an abstraction should have no
impact on clients; that is, their code should not have to be
recompiled.

(C++? you want to hide the implementation of an abstraction
completely from clients. In C++ the representation of a class is
visible in the class interface.

you want to share an implementation among multiple objects and
this fact should be hidden from the client.
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Bridge: Structure
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Composite

m Intent:

i

Compose objects into tree structures to represent part-whole hierarchies.
Composite lets clients treat individual objects and compositions of objects
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Composite: Applicability

m Use the Composite pattern when

you want to represent whole-part- hierarchies of objects.

you want clients to be able to ignore the difference between
compositions of objects and individual objects. Clients will treat all
objects in the composite structure uniformly.
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Composite: Structure
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Composite: Typical Object Structure
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Decorator

m Intent:

1 Attach additional responsibilities to an object dynamically. Decorators provide
a flexible alternative to subclassing for extending functionality.
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Decorator: Class Hierarchy
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Decorator: Applicabllity

m Use the Decorator pattern

to add responsibilities to individual objects dynamically and
transparently, that is, without affecting other objects.

for responsibilities that can be withdrawn.

when extension by subclassing is impractical. Sometimes a large
number of independent extensions are possible and would produce
an explosion of subclasses.
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Decorator: Structure
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Facade

m Intent:

Provide a unified interface to a set of interfaces in a subsystem.
Facade defines a higher-level interface that makes the subsystem
easier to use.
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Facade: Class Hierarchy
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Facade: Applicability

m Use the Facade pattern when

you want to provide a simple interface to a complex subsystem.

there are many dependencies between clients and the
implementation classes of an abstraction.

you want to layer your subsystems. Use a facade to define an entry
point to each subsystem level.
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Proxy

m Intent:
Provide a surrogate or placeholder for another object to control
access to It.
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Proxy: Class Hierarchy
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Proxy: Applicability

m Use the Proxy pattern when a surrogate is needed:

Remote proxy: provides a local representative for an object in a
different address space.

Virtual proxy: creates expensive objects on demand.
Protection proxy: controls access to the original object.

Smart reference: a replacement for a bare pointer that performs
additional actions when an object is accessed:

m counting the number of references to the real object so that it can
be freed when there are no more references.

= loading a persistent object into memory when it's first referenced.

s  checking that the real object is locked before it's accessed to
ensure that no other object can change it.
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Proxy: Structure

Cifent = Subject
Request()
RealSubject | reaiSubject Proxy
Request() Request() o f--------- ‘r'éaISubiect—>Flequest(): 1
(" aCiient L -
k subject . aProxy
- realSubject

Department of Computer Engineering

24

{anealsmajec: j

Sharif University of Technology




Object-Oriented Design — Lecture 21

i

Reference

m Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns. Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

Department of Computer Engineering 75 Sharif University of Technology



