Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 20:

GoF Design Patterns — Creational

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 20 @j
~rnS

Software Patterns

m Software Patterns support reuse of software architecture and
design.

Patterns capture the static and dynamic structures and
collaborations of successful solutions to problems that arise when
building applications in a particular domain.

m Patterns represent solutions to problems that arise when
developing software within a particular context.

i.e., “Pattern == problem/solution pair in a context”

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 20

GoF Design Patterns — Principles

m Emphasis on flexibility and reuse through decoupling of
classes.

m The underlying principles:

program to an interface, not to an implementation.
favor composition over class inheritance.

find what varies and encapsulate it.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 20 @j
~rnS

GoF Design Patterns: General Categories

m 23 patterns are divided into three separate categories:

Creational patterns
= Deal with initializing and configuring classes and objects.
Structural patterns

m Deal with decoupling interface and implementation of classes and
objects.

Behavioral patterns

= Deal with dynamic interactions among societies of classes and objects.

Department of Computer Engineering Sharif University of Technology

GoF Design Patterns: Purpose and Scope

Factory Method

Adapter (class)

Interpreter

Template Method

Abstract Factory

Adapter (object)

Chain of Responsibility

Builder Bridge Command
Prototype Composite Iterator
Singleton Decorator Mediator
Facade Memento
Flyweight Observer
Proxy State
Strategy
Visitor

Department of Computer Engineering

i

Sharif University of Technology

Object-Oriented Design — Lecture 20 @
~rnS

GoF Creational Patterns

m Class

Factory Method: Define an interface for creating an object, but let
subclasses decide which class to instantiate. Factory method lets a class
defer instantiation to subclasses.

m Object

Abstract Factory: Provide an interface for creating families of related or
dependent objects without specifying their concrete class.

Builder: Separate the construction of a complex object from its

representation so that the same construction process can create different
representations.

Prototype: Specify the kinds of objects to create using a prototypical
instance, and create new objects by copying this prototype.

Singleton: Ensure a class only has one instance, and provide a global point
of access to it.

Department of Computer Engineering Sharif University of Technology

L] Object-Oriented Design — Lecture 20

Factory Method

m Intent:

Define an interface for creating an object, but let subclasses decide which
class to instantiate. Factory Method lets a class defer instantiation to

b - —————— ——

docs.Add(doc);

Document*® doc = CreateDocument();
doc—>0pen();

subclasses.
Document l.q_do.f) Application
Openy) CreateDocument(}
Close() NewDocument() o-
Save() OpenbDacument()
Revert()
MyDocument et —-—-—-—-- MyApplication

Department of Computer Engineering

CreateDocument() O

- ————————

return new MyDocument H

Sharif University of Technology

Object-Oriented Design — Lecture 20

Factory Method: Applicabllity

m Use the Factory Method pattern when

a class can't anticipate the class of objects it must create.
a class wants its subclasses to specify the objects it creates.

classes delegate responsibility to one of several helper subclasses,
and you want to localize the knowledge of which helper subclass is
the delegate.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 20

Factory Method: Structure

o - —————

product = FactoryMethod() 1

Creator
Product FactoryMethod()
AnOperation() % o
A A

ConcreteProduct I-' eSS

ConcreteCreator

FactoryMethod(} O-

o - ————

retum new ConcreteProductH

Department of Computer Engineering

Sharif University of Technology

-
Abstract Factory

i

m Intent:

Provide an interface for creating families of related or dependent
objects without specifying their concrete classes.

WidgetFactory & Client

CreateScroliBary) -
CreateWindow() Window

| |
J\ --a-[PMWindow MotifWindow e - -

]

]

]

1

:

MotifWidgetFactory - PMWidgetFactory | —————_—___ . E
CreataScroliBar{)} i CreateScrollBar() E E
CreateWindow() i CreateWindow() i ScrollBar & 7
i a s

|]]

e jpa— | i

: ‘-—ad PMScroliBar MotifScrollBar o - -

| i

B et o ot e s . et e e e S

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 20 @j

Abstract Factory: Applicabllity

m Use the Abstract Factory pattern when

a system should be independent of how its products are created,
composed, and represented.

a system should be configured with one of multiple families of
products.

a family of related product objects is designed to be used together,
and you need to enforce this constraint.

you want to provide a class library of products, and you want to
reveal just their interfaces, not their implementations.

Department of Computer Engineering Sharif University of Technology

11

Object-Oriented Design — Lecture 20

Abstract Factory: Structure

AbstractFactory |

CreateProcictA()
CraatefroductBy)

ConcreteFactory1

ConcreteFactory2

CreeteProductA()
CreateProductB()

CreateProductAl)
CreateProduciB()

Department of Computer Engineering

12

~~-#4 ProductA2 ProductA1 - - -,
" -
' '
' "
: AbstractProductB |= .
' '
' | | '
t--ms ProductB2 ProductB1 - -

AbstractProductA =t

Client

Sharif University of Technology

Object-Oriented Design — Lecture 20

Builder

m Intent:

Separate the construction of a complex object from its representation so that
the same construction process can create different representations.

RTFReader

buslder
K>

ParseRTF() ¢

while {1 = gﬁ;l the next 1oken} { ™
switch £ Type {
CHAR:
builder—>ConveriCharacter{L.Char)
FONT:

bu“&e«->CcnverlFomChang0(t.FomJ
PARA:
builder->ConvertParagraphi)

Department of Computer Engineering

TextConverter
ConvertCharacterichar)
CanvartFontChange(Font)
ConvertParagraphy)

I I |
ASCliConverter TeXConverter TextWidgetConverter
ConvernCharacter{char) ConvenCharacter{char) ConvenCharacter|char)
GetASClIText{) ConvertFomtChange(Font) ConvertFontChange(Font)

T ConvenParagraph() ConvenParagraph()
: GetTeXTaxt() GetTextWidgst()

1 T T

i i |

1 1 I

| i i

'--| ASCliText '-* TeXText '--1 TextWidget

13

Sharif University of Technology

Object-Oriented Design — Lecture 20 @j
~rnS

Builder: Applicabllity

m Use the Builder pattern when

the algorithm for creating a complex object should be
independent of the parts that make up the object and
how they're assembled.

the construction 1:process must allow different
representations for the object that's constructed.

Department of Computer Engineering 14 Sharif University of Technology

Object-Oriented Design — Lecture 20

Builder: Structure

builder
Director e~

Construct() 0
i
I
I
l

for all objects in structure {
} builder—=BuildPart{)

Department of Computer Engineering

Builder

BuildPartf{)

A

ConcreteBuilder [—--—---- = -DI Product

BuildPart{)
GetResult()

15

Sharif University of Technology

Object-Oriented Design — Lecture 20

Builder: Collaborations

aClient aDirector aConcreteBuilder
)]
Hoow ConcreteBuider Y ’
1
new Director(aConcreteBuilder) i
Construct() .I BuildPartA() 5
BuildPartB() -‘I
BuikdPartC() .I
GetResult() T -E
o

Department of Computer Engineering Sharif University of Technology

16

@:
Prototype -

m Intent:

Specify the kinds of objects to create using a prototypical instance,
and create new objects by copying this prototype.

Tool l-I Graphic
Manipulate() Draw(Position)
A Cilone()
l | prototype I |
RotateTool GraphicTool [&>—! S PP
Manipulate() Manipulate{) Q Draw(Position)
E Clone() /k _____
g [I
o wnrahmessCionsl WholeNote HalfNote
z Draw(Position) Draw(Position)
while {user drags mouse :
p->Draw(negi position)){ Clone() CI’ Clone() ?
insert p into drawing E E
b
return copy of self return copy of self
Department of Computer Engineering Sharif University of Technology

17

Object-Oriented Design — Lecture 20 @j
~rnS

Prototype: Applicability

m Use the Prototype pattern when

the classes to instantiate are specified at run-time, for example, by
dynamic loading.

building a class hierarchy of factories that parallels the class
hierarchy of products should be avoided.

instances of a class can have one of only a few different
combinations of state.

= It may be more convenient to install a corresponding number of
prototypes and clone them rather than instantiating the class manually.

Department of Computer Engineering 18 Sharif University of Technology

Object-Oriented Design — Lecture 20

Prototype: Structure

Client preRtypn = Prototype
Operation{) ¢ Clone()
5 \
p= prototype—>Clone()H
ConcretePrototypet ConcretePrototype2
Clone() @ Clone() ¢

1 1
I I
I I
1 1

retum copy of selfﬂ return copy of selfﬂ

Department of Computer Engineering 19 Sharif University of Technology

Object-Oriented Design — Lecture 20

Singleton
m Intent:
Ensure a class only has one instance, and provide a global point of
access to it.
Singleton
static Instance() O---q---—=-==-—-—1 retum uniguelnstance H
SingietonOperation()
GetSingletonData()
static uniqueinstance
singletonData
Department of Computer Engineering Sharif University of Technology

20

Object-Oriented Design — Lecture 20 @j
~rnS

Singleton: Applicabillity

m Use the Singleton pattern when

there must be exactly one instance of a class, and it must
be accessible to clients from a well known access point.

when the sole instance should be extensible by
subclassing, and clients should be able to use an
extended instance without modifying their code.

Department of Computer Engineering 71 Sharif University of Technology

Object-Oriented Design — Lecture 20

i

Reference

m Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns. Elements of Reusable Object-oriented Software.
Addison-Wesley, 1995.

Department of Computer Engineering Sharif University of Technology

22

