Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 18:

Interfaces and Components

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 18

Design Workflow: Architecture and Subsystems

m Place in the Design Workflow:

Architectural Design

Design a Use Case

Design a Class
Design a Subsystem
m concerned with breaking a system up into subsystems that
are as independent as possible.

Interactions between subsystems are mediated by interfaces.

Department of Computer Engineering) Sharif University of Technology

Object-Oriented Design — Lecture 18

Interfaces

m Interfaces allow software to be designed to a contract rather
than to a specific implementation.

m An interface specifies a named set of public features.

Interfaces separate specification of functionality from
implementation.

Interfaces may be attached to classes, subsystems, components, and
any other classifier and define the services offered by these.

If a classifier inside a subsystem realizes a public interface, the
subsystem or component also realizes the public interface.

Anything that realizes an interface agrees to abide by the contract
defined by the set of operations specified in the interface.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 18

Interface Semantics

m A classifier realizing an interface has the following responsibilities for each feature:

Interface specifies

Realizing classifier

Operation

Must have an operation with the same signature and
semantics

Attribute

Must have public operations to set and get the value of the
attribute - the realizing classifier is not required to actually
have the attribute specified by the interface, but it must

behave as though it has

Association

Must have an association to the target classifier - if an
interface specifies an association to another interface, the
implementing classifiers of these interfaces must have an
association between them

Constraint

Must support the constraint

Stereotype

Tagged value

Has the stereotype

Has the tagged value

Protocol (e.g., as
defined by a proto-
col state machine -
see Section 21.2.1)

Must realize the protocol

Department of Computer Engineering

Sharif University of Technology

Object-Oriented Design — Lecture 18

Provided Interface

m An interface provided by a classifier:

the classifier realizes the interface;

use the" class" style notation when you need to show the operations on the

model;

use the shorthand "lollipop" style notation when you just want to show the

interface without operations.

«interface»
Borrow

borrow() toisart

return() E i Sl
isOverdue()

A realization
R I — ./relationship
Book cD Book

Borrow

“Class” style notation

Department of Computer Engineering

CD

“Lollipop” style notation
(note: you can't show the interface
operations or attributes with this
shorthand style of notation)

Sharif University of Technology

Object-Oriented Design — Lecture 18

Required Interface

m An interface required by a classifier:
the classifier requires another classifier that realizes the interface;

show a dependency to a class style interface, a lollipop style interface, or use
an assembly connector.

class style notation lollipop style notation
A .
' - o .y
5 :
4 E
Library : Library - Library
u -
- . - r
v : ' :
«interface» 4 Borrow | Borrow
Borrow : ~

preferred preferred
required interface
Department of Computer Engineering Sharif University of Technology

-
Assembly Connector

m Joins provided and required interfaces.

Library

assembly
connector

0

Book

Department of Computer Engineering

CD

Sharif University of Technology

=
Ports

m Port - groups a semantically cohesive set of provided and required
interfaces:

may have a name, type, and visibility.

DisplayMedium
i Book Book
port DisplayMedium
presentation presentation:Display
Display /
port type
port name
Viewer Book
view [presentation:Display

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 18

Components

m Component - a modular part of a system that encapsulates its contents
and whose manifestation is replaceable within its environment:

may have attributes and operations;
may participate in relationships;
may have internal structure;

its external behavior is completely defined by its provided and required
interfaces;

components are mapped to one or more artifacts (runtime manifestations).

component «component» Ej

i Py

interface g] «providedinterfaces» ,

/ IAdd provided
«Component» i ress interfaces
— arty
1 A 12 «artifacts» artifacts that provide the
: physical manifestation of the
party.jar component
Department of Computer Engineering Sharif University of Technology

L] Object-Oriented Design — Lecture 18

CBD and Subsystems

m Component-Based Development (CBD) is about constructing
software from plug-in parts:

you use interfaces to make components "pluggable";

by designing to an interface, you allow the possibility of many
different realizations by many different components.

m Subsystem - a component that acts as a unit of decomposition
for a larger system:

a component stereotyped «subsystem>;
is used to decompose a large system into manageable chunks;

breaking a system down into subsystems is a key to successful CBD
using UP.

Department of Computer Engineering 10 Sharif University of Technology

Object-Oriented Design — Lecture 18

Subsystems: Applications

m Subsystems are used to:

separate design concerns;
represent large-grained components;

wrap legacy systems.

«subsystem» g |
GUI

5B O

QOO

Customer Account Order
Manager Manager Manager

«subsystem» & |
BusinessLogic

Department of Computer Engineering Sharif University of Technology

11

Object-Oriented Design — Lecture 18

Designing with Interfaces

m Use interfaces to hide the implementation details of subsystems:

the Facade pattern hides a complex subsystem behind a simple
interface provided by a wrapper object;

the /ayering pattern organizes subsystems into semantically cohesive
layers:

= a layer can only interact with its adjacent layers;
= all dependencies between layers should be mediated by an interface;

m example layers include presentation, business logic, and utility layers.

Department of Computer Engineering 12 Sharif University of Technology

presentation
[N AN
domain
business
logic
I
sarvices

o

utility

Designing with Interfaces: Layering Pattern

Product
Manager

jmmeesmscccsccecccccscecens «subsystem»

E | GuUI

E Orde%ager

" Customer (P

5 Manager

i | «subsystem» @ «subsystem»

i+ | Customer =4 Order

; HIl | T

; ' /‘I\ Account '

: : ? Manager E

E ' «subsystem» ;

' : Accounts :

v S v v
«subsystem» | + «subsystem»
javax.swing java.sql
«subsystem»

{global}
java.util

Department of Computer Engineering

13

©—

«subsystem:
Product

Sharif University of Technology

Object-Oriented Design — Lecture 18

Reference

m Arlow, J., Neustadt, 1., UML 2 and the Unified Process: Practical
200176§ct-0r/ented Ana/yS/s and Design, 2™ Ed. Addison-Wesley,

Department of Computer Engineering Sharif University of Technology

14

