
Department of Computer Engineering
1

Sharif University of Technology

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 18:

Interfaces and Components



Object-Oriented Design – Lecture 18

Department of Computer Engineering
2

Sharif University of Technology

Design Workflow: Architecture and Subsystems

 Place in the Design Workflow:

 Architectural Design

 Design a Use Case

 Design a Class

 Design a Subsystem

 concerned with breaking a system up into subsystems that 
are as independent as possible.

 Interactions between subsystems are mediated by interfaces.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
3

Sharif University of Technology

Interfaces

 Interfaces allow software to be designed to a contract rather 
than to a specific implementation.

 An interface specifies a named set of public features.

 Interfaces separate specification of functionality from 
implementation.

 Interfaces may be attached to classes, subsystems, components, and 
any other classifier and define the services offered by these.

 If a classifier inside a subsystem realizes a public interface, the 
subsystem or component also realizes the public interface.

 Anything that realizes an interface agrees to abide by the contract 
defined by the set of operations specified in the interface.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
4

Sharif University of Technology

Interface Semantics

 A classifier realizing an interface has the following responsibilities for each feature:



Object-Oriented Design – Lecture 18

Department of Computer Engineering
5

Sharif University of Technology

Provided Interface

 An interface provided by a classifier:

 the classifier realizes the interface;

 use the" class" style notation when you need to show the operations on the 
model;

 use the shorthand "lollipop" style notation when you just want to show the 
interface without operations.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
6

Sharif University of Technology

Required Interface

 An interface required by a classifier:

 the classifier requires another classifier that realizes the interface;

 show a dependency to a class style interface, a lollipop style interface, or use 
an assembly connector.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
7

Sharif University of Technology

Assembly Connector

 Joins provided and required interfaces.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
8

Sharif University of Technology

Ports

 Port - groups a semantically cohesive set of provided and required 
interfaces:

 may have a name, type, and visibility.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
9

Sharif University of Technology

Components

 Component - a modular part of a system that encapsulates its contents 
and whose manifestation is replaceable within its environment:

 may have attributes and operations;

 may participate in relationships;

 may have internal structure;

 its external behavior is completely defined by its provided and required 
interfaces;

 components are mapped to one or more artifacts (runtime manifestations).



Object-Oriented Design – Lecture 18

Department of Computer Engineering
10

Sharif University of Technology

CBD and Subsystems

 Component-Based Development (CBD) is about constructing 
software from plug-in parts:
 you use interfaces to make components "pluggable";

 by designing to an interface, you allow the possibility of many 
different realizations by many different components.

 Subsystem - a component that acts as a unit of decomposition 
for a larger system:
 a component stereotyped «subsystem»;

 is used to decompose a large system into manageable chunks;

 breaking a system down into subsystems is a key to successful CBD 
using UP.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
11

Sharif University of Technology

Subsystems: Applications

 Subsystems are used to:

 separate design concerns;

 represent large-grained components;

 wrap legacy systems.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
12

Sharif University of Technology

Designing with Interfaces

 Use interfaces to hide the implementation details of subsystems:

 the Facade pattern hides a complex subsystem behind a simple 
interface provided by a wrapper object;

 the layering pattern organizes subsystems into semantically cohesive 
layers:

 a layer can only interact with its adjacent layers;

 all dependencies between layers should be mediated by an interface;

 example layers include presentation, business logic, and utility layers.



Object-Oriented Design – Lecture 18

Department of Computer Engineering
13

Sharif University of Technology

Designing with Interfaces: Layering Pattern



Object-Oriented Design – Lecture 18

Department of Computer Engineering
14

Sharif University of Technology

Reference

 Arlow, J., Neustadt, I., UML 2 and the Unified Process: Practical 
Object-Oriented Analysis and Design, 2nd Ed. Addison-Wesley, 
2005.


