
Department of Computer Engineering
1

Sharif University of Technology

Object-Oriented Design

Lecturer: Raman Ramsin

Lecture 17:

Refining Analysis Relationships



Object-Oriented Design – Lecture 17

Department of Computer Engineering
2

Sharif University of Technology

Refining Analysis Relationships

 Relationships in analysis are converted to implementable design 
relationships.

 Refining analysis relationships to design relationships involves:

 adding navigability;

 adding multiplicity to both ends of the association;

 adding a role name at both ends of the association, or at least on the 
target end of the association;

 implementing one-to-one, one-to-many, many-to-one, and many-to-many 
associations;

 implementing bidirectional associations and association classes;

 using structured classifiers for modeling composition.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
3

Sharif University of Technology

Aggregation Relationship

 Whole-part relationship where objects of one class act as the whole 
or aggregate, and objects of the other class act as the parts; 

 general semantics: Assembly, Containment, or Membership; can be 
used in analysis as well as design;

 the whole uses the services of the parts; the parts service the 
requests of the whole;

 the whole is the dominant, controlling side of the relationship; the 
part tends to be more passive;

 aggregation is transitive: If C is part of B and B is part of A, then C 
is part of A.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
4

Sharif University of Technology

Aggregation Relationship: Asymmetry

 Aggregation relationship is asymmetric:

 a whole can never directly or indirectly be a part of itself;

 there must never be a cycle in the aggregation graph.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
5

Sharif University of Technology

Aggregation and Composition

 There are two types of aggregation relationship:

 Aggregation;

 Composition Aggregation - usually referred to simply as 
Composition.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
6

Sharif University of Technology

Aggregation: Semantics

 “Aggregation” is a weak Whole-Part relationship (like a computer system 
and its peripherals);

 The aggregate can sometimes exist independently of the parts, sometimes 
not;

 The parts may exist independently of the aggregate;

 It is possible to have shared ownership of the parts by several aggregates;

 Aggregation hierarchies and aggregation networks are possible;

 The whole always knows about the parts, but if the relationship is one-way 
from the whole to the part (which is typically the case), the parts don't 
know about the whole.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
7

Sharif University of Technology

Composition

 A strong form of aggregation (like a tree and its leaves):

 the parts belong to exactly one composite at a time;

 the composite has sole responsibility for the disposition of all its parts - this 
means responsibility for their creation and destruction;

 the composite may also release parts, provided responsibility for them is 
assumed by another object;

 if the composite is destroyed, it must destroy all its parts or give 
responsibility for them over to some other object;

 each part belongs to exactly one composite so you can only have 
composition hierarchies - composition networks are impossible.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
8

Sharif University of Technology

Refining Analysis Relationships: One-to-One Association

 Add navigability to the model; refine into Composition only if the semantics 
apply; you may also choose to merge the two classes.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
9

Sharif University of Technology

Refining Analysis Relationships: Many-to-One Association

 Add navigability; refine into Aggregation only if the semantics apply.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
10

Sharif University of Technology

Refining Analysis Relationships: One-to-Many Association

 There is a collection of objects on the target side:

 Use an inbuilt array (most OO languages directly support arrays) -
they are generally quite inflexible but are usually fast.

 Use a collection class - they are more flexible than inbuilt arrays and 
are faster than arrays when searching the collection is required 
(otherwise they are slower). A Map is frequently used.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
11

Sharif University of Technology

Reifying Analysis Relationships

 Some relationships are pure analysis artifacts and can 
be made implementable by the process of reification:

1. Many-to-many associations

2. Bidirectional associations

3. Association classes



Object-Oriented Design – Lecture 17

Department of Computer Engineering
12

Sharif University of Technology

Reifying Relationships: Many-to-Many Associations

1. Add navigability; Refine into Aggregation or Composition only 
if the semantics apply.

2. Use a collection or reify the relationship into a class.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
13

Sharif University of Technology

Reifying Relationships: Bidirectional Associations

 Replace with two unidirectional associations or a reified class 
or a bidirectional map; refine into Aggregation or Composition 
only if the semantics apply.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
14

Sharif University of Technology

Reifying Relationships: Association Classes

1. Replace with a class (usually with the same name as the association class);

2. Add a constraint in a note to indicate that objects on each end of the reified 
relationship must form a unique pair.



Object-Oriented Design – Lecture 17

Department of Computer Engineering
15

Sharif University of Technology

Reference

 Arlow, J., Neustadt, I., UML 2 and the Unified Process: Practical 
Object-Oriented Analysis and Design, 2nd Ed. Addison-Wesley, 
2005.


