Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 16: Design Workflow

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Workflow

m The design workflow is about determining how the functionality
specified in the analysis model will be implemented.

m The design workflow is the primary modeling activity in the last

part of the Elaboration phase and the first part of the Construction
phase.

m The design model contains:
design subsystems;
design classes;
interfaces;
use case realizations-design;

a deployment diagram (first-cut).

Department of Computer Engineering) Sharif University of Technology

-
Trace Relationships

1
0..” 0.*
, «trace» .
Analysis package |€-------=----ccccu-oq Design subsystem
A
conceptual '
model Analysis Model p Design class
A\ Analysis class :
' «trace»
«trace» YGREEEEEE PR 2
| + 0.° «interface»
My 1 - - - o Interface
: A
physical
model Design Model

- -\
- -
- N .

g ~ 1 1 l‘ .
+ Use case realization N = = o mm i . Use case realization %

e —analysis S % —design g

-
- - - -
i I T e

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Workflow: Design a Class

m The Design Workflow consists of the following

activities:
Architectural Design

Design a Use Case

Design a Class

Design a Subsystem

Department of Computer Engineering

Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Classes

m Design classes are the building blocks of the design model.

m Design classes are developed during the USDP activity Design
a class.

m Design classes are classes whose specifications have been
completed to such a degree that they can be implemented.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Classes: Sources

m Design classes come from two sources:

the problem domain:

= a refinement of analysis classes;

m one analysis class may become one or more design classes;
the solution domain:

m utility class libraries;

= middleware;

s GUI libraries;

= reusable components;

= implementation-specific details.

Department of Computer Engineering Sharif University of Technology

-
Design Classes: Sources

Problem Analysis Design Solution
domain classes classes domain

java.util

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Classes: Anatomy

m Design classes have complete specifications:
complete set of attributes including:

= hame;
= type;
m default value when appropriate;
= Visibility;
operations:
= hame;
= names and types of all parameters;
= optional parameter values if appropriate;
m return type;
m Visibility.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Classes: Anatomy

analysis

BankAccount

name

balance

deposit()
withdraw()
calculatelnterest()

Department of Computer Engineering

«trace»

number S —

constructor

design

BankAccount

—name : String
—number : String
—balance : double =0

L +BankAccount(name:String, number:String)

+deposit(m:double) : void
+withdraw(m:double) : boolean
+calculatelnterest() : double
+getName() : String
+setName(n:String) : void
+getAddress() : String
+setAddress (a:String) : void
+getBalance() : double

Sharif University of Technology

Object-Oriented Design — Lecture 16

Design Classes: Well-formedness

O Tlhe public operations of the class define a contract with its
clients.

m Completeness - the class does no less than its clients may
reasonably expect.

m Sufficiency - the class does no more than its clients may
reasonably expect.

= Primitiveness - services should be simple, atomic, and
unique.

Department of Computer Engineering Sharif University of Technology

10

Object-Oriented Design — Lecture 16

Design Classes: Well-formedness (Contd.)

= High cohesion:
each class should embody a single, well-defined abstract concept;

all the operations should support the intent of the class.
= Low coupling:

a class should be coupled to just enough other classes to fulfill its
responsibilities;

olgmly couple two classes when there is a true semantic relationship between
them;

avoid coupling classes just to reuse some code.

Department of Computer Engineering Sharif University of Technology

11

Object-Oriented Design — Lecture 16

Inheritance

m Only use inheritance when there is a clear "is a" relationship
between two classes or to reuse code.

m Disadvantages:
it is the strongest possible coupling between two classes;
encapsulation is weak within an inheritance hierarchy;

very inflexible in most languages - the relationship is decided at
compile time and fixed at runtime.

Department of Computer Engineering 12 Sharif University of Technology

Object-Oriented Design — Lecture 16

Inheritance and Aggregation

m Subclasses should always represent "is kind of" rather than "is role played
by" - always use aggregation to represent "is role played by".

Employee

lf.

Manager

Programmer

A

«instantiate»

john:Programmer

0.* i By
Employee [O—> Job
A i
E Manager Programmer
:))

«instantiate»

«instantiate» «instantiate»

:Manager | | :Programmer

Department of Computer Engineering

13

N\

just change this link at
runtime to promote john

Sharif University of Technology

Object-Oriented Design — Lecture 16

Reference

m Arlow, J., Neustadt, 1., UML 2 and the Unified Process. Practical
zOobégct-Or/ented Ana/yS/s and Design, 2™ Ed. Addison-Wesley,

Department of Computer Engineering Sharif University of Technology

14

