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Design Workflow

m The design workflow is about determining how the functionality
specified in the analysis model will be implemented.

m The design workflow is the primary modeling activity in the last

part of the Elaboration phase and the first part of the Construction
phase.

m The design model contains:
design subsystems;
design classes;
interfaces;
use case realizations-design;

a deployment diagram (first-cut).
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Design Workflow: Design a Class

m The Design Workflow consists of the following

activities:
Architectural Design

Design a Use Case

Design a Class

Design a Subsystem
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Design Classes

m Design classes are the building blocks of the design model.

m Design classes are developed during the USDP activity Design
a class.

m Design classes are classes whose specifications have been
completed to such a degree that they can be implemented.
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Design Classes: Sources

m Design classes come from two sources:

the problem domain:

= a refinement of analysis classes;

m one analysis class may become one or more design classes;
the solution domain:

m utility class libraries;

= middleware;

s GUI libraries;

= reusable components;

= implementation-specific details.
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Design Classes: Anatomy

m Design classes have complete specifications:
complete set of attributes including:

= hame;
= type;
m default value when appropriate;
= Visibility;
operations:
= hame;
= names and types of all parameters;
= optional parameter values if appropriate;
m return type;
m Visibility.
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Design Classes: Anatomy

analysis

BankAccount

name

balance

deposit()
withdraw( )
calculatelnterest()
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BankAccount

—name : String
—number : String
—balance : double =0

L +BankAccount( name:String, number:String)

+deposit( m:double ) : void
+withdraw( m:double ) : boolean
+calculatelnterest( ) : double
+getName( ) : String
+setName( n:String ) : void
+getAddress( ) : String
+setAddress ( a:String ) : void
+getBalance( ) : double
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Design Classes: Well-formedness

O Tlhe public operations of the class define a contract with its
clients.

m Completeness - the class does no less than its clients may
reasonably expect.

m Sufficiency - the class does no more than its clients may
reasonably expect.

= Primitiveness - services should be simple, atomic, and
unique.
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Design Classes: Well-formedness (Contd.)

= High cohesion:
each class should embody a single, well-defined abstract concept;

all the operations should support the intent of the class.
= Low coupling:

a class should be coupled to just enough other classes to fulfill its
responsibilities;

olgmly couple two classes when there is a true semantic relationship between
them;

avoid coupling classes just to reuse some code.
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Inheritance

m Only use inheritance when there is a clear "is a" relationship
between two classes or to reuse code.

m Disadvantages:
it is the strongest possible coupling between two classes;
encapsulation is weak within an inheritance hierarchy;

very inflexible in most languages - the relationship is decided at
compile time and fixed at runtime.
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Inheritance and Aggregation

m Subclasses should always represent "is kind of" rather than "is role played
by" - always use aggregation to represent "is role played by".
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