Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 14:
Use Case Realizations — Part 2

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 14

Analysis Workflow: Analyze a Use Case

m The analysis workflow consists of the following
activities:

Architectural analysis

Analyze a use case
= Outputs:

analysis classes
use case realizations

Analyze a class
Analyze a package

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 14

Combined Fragments

m Combined fragments - areas within a sequence diagram with
different behavior.
The operator defines Aow its operands execute.
The guard condition defines whether its operand executes.
The operand contains the behavior.

sd OperatorSyntax)
A B :C
a() !
' combined fragment
name operétor [guardCondition1] :) -
: . b() : operand
™
--------------- [guardCondition2] X '
() : E operand
" :
: \ any guard conditions must
' be placed above the first
message in the operand

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 14

Combined Fragments: Operators - opt and alt

N opth- tr;ere is a single operand that executes if the condition is true (like if
... then).

m alt - the operand whose condition is true is executed.

sd OptAndAltSyntax)
A ‘B :C :D
] : Z !
opt [condition] E) 1I:_ E :
E 0p1() : ' : do this if condition is true
£ -»> : :
alt i [condition1] H : .
: 0p2() . : 5 do this if condition1 is true
R Geemmcceacoao-
[condition2) : ;
op3() : »E : do this if condition?2 is true
--- L
[else] ‘ ‘ '
op4() ' 1 ’: do this if none of the other
! conditions are true

Department of Computer Engineering Sharif University of Technology

L] Object-Oriented Design — Lecture 14 @.
Combined Fragments: Operators - opt and alt
Use case:ManageBasket s /
ID: 2 ShoppingBasket L B0 Item L R Product
Brief description: getltem ():ltem quantity:int productld :String
The Customer changes the quantity of an item in the basket. setQuantity():int gzg‘c‘j;;}gg?smng
price:double

Primary actors:
Customer

Secondary actors:
None.

sd ManageBasket)

Preconditions:
1. The shopping basket contents are visible.

Main flow:

1. The use case starts when the Customer selects an item in the
basket.

2. If the Customer selects "delete item"
2.1 The system removes the item from the basket.

3. If the Customer types in a new quantity

3.1 The system updates the quantity of the item in the basket.

Postconditions:
None.

Alternative flows:
None.

Department of Computer Engineering

X

:Customer

:ShoppingBasket item:ltem

getltem ()

A 4

[changeQuantity]

setQuantity()

alt) :

opt[item.quantity

=0] /

SIS T SN

«destroy»

X

[deleteltem]

«destroy»

I L I

‘,
'
'
'
'
)
1
)
1
1
'
'
J
R R R TR EE EE R

rsdeccaduecsncncsdecccdecncccnadecdecnccccdeces

X

Sharif University of Technology

Object-Oriented Design — Lecture 14

Combined Fragments: Operators - ioop and break

m loop - loop min, max [condition]
loop or loop * - loop forever;
loop n, m - loop (m—n + 1) times;
loop [booleanExpression] - loop while booleanExpression is true;

loop 1, * [booleanExpression] - loop once then loop while
booleanExpression is true;

loop [for each object in collectionOfObjects] - execute the body of
the loop once for each object in the collection;

loop [for each object in className] - execute the body of the loop
once for each object of the class.

m break - if the guard condition is true, the operand is
executed, not the rest of the enclosing interaction.

Department of Computer Engineering Sharif University of Technology

L] Object-Oriented Design — Lecture 14

Combined Fragments: Operators - ioop and break
Syntax

sd LoopAndBreakSyntax)

loop min ‘A B
times then v ;
while condition T T
is true loop loop min, max [condition] /l E
(max — min) E op10 :
times . P >
loop while ; ;
condition loop [condition];) :
is true ' :

. op2() ' _

A >, on breaking

J : : out of the loop
break ; op3() . } do this

break must — ; :

- op4 '
be global : P40 —»! } this does not
relative ' : happen if break
to loop , ; executes

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 14

Combined Fragments: Operators - ioop and break
Example

RegistrationManager] 0.." Course
Ccourses
findCourse(name : String) : Course 0.
findStudent{ name : String) : Student
registration
0.*
'1 *
0.. Student
students

sd FindCourse(name : String) : Course)
:RegistrationManager| | courses course:Course
> e e
loop [for each course in coursesu courseName = detName()
break [name = courseName]) : :
course . ;
(‘ q====1-"°"°""°°"°T°-°"°°TTToTTEEEmmEmEEEom b ' [
null : :
RNt - : :
Department of Computer Engineering 3 Sharif University of Technology

Object-Oriented Design — Lecture 14

Combined Fragments: Operators — Other

ref - the combined fragment refers to another interaction.
par - all operands execute in parallel.
critical - the operand executes atomically without interruption.

se(q - operands execute in parallel subject to the following constraint:
events arriving on the same lifeline from different operands occur in the
same sequence as the operands occur.

strict - the operands execute in strict sequence.

neg - the operand shows invalid interactions.

ignore -lists messages that are intentionally omitted from the interaction.
consider -lists messages that are intentionally included in the interaction.

assert - the operand is the only valid behavior at that point in the
interaction.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 14

Communication Diagrams

m Communication diagrams - emphasize the structural aspects of an

interaction:
lifelines are connected by links;

messages have a sequence number - they are numbered hierarchically

according to the nesting of the focus of control.

sd AddCourses)

sequence number message

N/

1: addCourse("UML") —>»

uml:Course

2: addCourse("MDA")

4’

¥

:Registrar link

:RegistrationManager

mda:Course

lifeline

T 1.1: «create»

l 2.1: «create»

object creation
message

Department of Computer Engineering

10

Sharif University of Technology

Object-Oriented Design — Lecture 14

Iteration

m Iteration - use an iteration specifier (*) and an optional iteration
clause on the message.

The iteration clause specifies the number of times to loop.

You can use natural language, pseudocode, source code, or sequence
diagram loop notation for the iteration clause.

Iteration over a collection of objects:

s Denoted by showing the role name and multiplicity (>1) on the
target end of the link and prefixing the message with *.

m The message is sent to each object in turn.

Use the parallel iteration specifier *// to indicate that messages are
executed in parallel.

Department of Computer Engineering 11 Sharif University of Technology

-
lteration - Example

iteration specifier

sd PrintCourses) \ iteration clause

1.1 *[fori=1ton]: printCourse(i) —»

N

:RegistrationManager|

1: printCourses() —»

:Registrar l 1.1.1: print()

[i(]:Course

sd PrintCourses)

1: printCourses() —

:RegistrationManager

:Registrar

l 1.1: " print()

courses *

:Course

Department of Computer Engineering 12

Sharif University of Technology

Object-Oriented Design — Lecture 14

Branching

m Branching - prefix messages with guard conditions. The
message executes if the guard condition is true.

m [t can be hard to show branching clearly on a communication
diagram - for complex branching, use sequence diagrams

instead.

1: register ("Jim", "UML") —»

sd RegisterStudentForCourse) 1.1: student = findStudent("Jim") »
1.2: course = findCourse{ "UML") —»

N

<+— 1.4 [found] : error()

:Registrar

found = (student != null) & (course != null) D]

:RegistrationManager

course:Course

1 1.3 [found] : register(student)

\

guard condition

Department of Computer Engineering 13

Sharif University of Technology

Object-Oriented Design — Lecture 14

Interaction Occurrences

m Interaction occurrences: references to another interaction.

The flow of the referenced interaction is included in the flow of the
referencing interaction.

Parameters - interaction occurrences may have parameters - use
normal parameter notation.

Gates - inputs and outputs of interactions:

= a point on the sequence diagram frame that connects a
message outside the frame to a message with the same
signature inside the frame.

Use parameters when you know the source and destination of all
messages - use gates when you don't.

Department of Computer Engineering 14 Sharif University of Technology

Object-Oriented Design — Lecture 14

Interaction Occurrences — Example
Use Case and Class Diagram

Use case:LogOnRegistrar

ID: 4

Brief description:
The Registrar logs on to the system.

Primary actors: SecurityManager
Registrar 3
Secondary actors:
None. : .

7 RegistrationManager L 0.. Course
Preconditions: courses
1. The Registrar is not logged on to the system. 0.*
Main flow: S
1. The use case starts when the Registrar selects "log on". hegistrenon
2. The system asks the Registrar for a user name and password. .
3. The Registrar enters a user name and password. Q..
4. The system accepts the user name and password as valid. ! = 0. Student

students

Postconditions:
1. The Registrar is logged on to the system.

Alternative flows:
InvalidUserNameAndPassword
RegistrarAlreadyLoggedOn

Department of Computer Engineering Sharif University of Technology

15

Interaction Occurrences — Example

SDs

sd LogOnRegistrar)

A

:Registrar I :SecurityManager]

.. logOn(userName, password) _ .

authenticate(userName, password)

sd ChangeStudentAddress)

X

:Registrar |:SecurityManager| | :RegistrationManager|| theStudent:Student

1 : -
ref LogOnFlegistrar)
[——————— ! interaction

occurrence

ceme-e

theStudent = findStudent(name)

setAddress('newAddress)

-

-

Rt &k I TETEE

ji

Department of Computer Engineering

16

Sharif University of Technology

Interaction Occurrences — Parameters

sd FindStudent(name : String) : Student)

X

:Registrar I :RegistrationManager]

findStudent(name) i

___________________________ |

sd RegisterJimForUMLCourse)

sd FindCourse(name : String) : Course)

X

:Registrar I :RegistrationManagerJ

findCourse(name) .

___________________________ |

X

:Registrar I:RegistrationManagerl | theCour:

se:Course

ref
—) theStudent = FindStudent("Jim")

ref

/ theCourse = FindCourse("UML")

register(theStudent) |

A 4

Department of Computer Engineering

17

Sharif University of Technology

- Ll
Interaction Occurrences — Gates

sd RegisterJimForUMLCoursg
‘Registrar I:RegistrationManager| [theCourse:Course |
sd FindStudent) 4 theStudent = findStudent("Jim") [ref)
| } » FindStudent
‘RegistrationManager ' il
Ll]
) ' theCourse = findCourse("UML") ref
findStudent(name) _ D = FindCourse
D register(theStudent) : R -
/ e ’ E E

. I d GetS ML
- sd FindCourse sd GetStudentsOnUMLCourse)

:RegistrationManager

findCourse(name) S :Reglistrar I :Registrati?nManage—rl

P
'
'

—_getRegisteredStudents("UML")

uml = findCourse("UML")

7

FindCourse

Department of Computer Engineering Sharif University of Technology

18

Object-Oriented Design — Lecture 14

Reference

m Arlow, J., Neustadt, 1., UML 2 and the Unified Process: Practical
zOobégct-Or/ented Ana/yS/s and Design, 2™ Ed. Addison-Wesley,

Department of Computer Engineering Sharif University of Technology

19

