Object-Oriented Design

| ecturer: Raman Ramsin

Lecture 13:
Use Case Realizations — Part 1

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13 @:
s

Analysis Workflow: Analyze a Use Case

m The analysis workflow consists of the following
activities:

Architectural analysis

Analyze a use case
= Outputs:

analysis classes
use case realizations

Analyze a class
Analyze a package

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13 @
~rnS

Use Case Realizations

m Use case realizations show how instances of analysis classes
interact to realize the functional requirements specified by a
use case.

Each use case realization realizes exactly one use case.

Use case realizations consist of:

analysis class diagrams - these should "tell a story" about one (or
more) use cases;

interaction diagrams - these demonstrate how objects interact to
realize the use case behavior;

special requirements - you always uncover new requirements
during use case realization and you need to record these;

use case refinement - you may need to change a use case as you
begin to realize it.

use case

Blace Ovder 1 «trace» 1 [~ «use case realization»
\ Y Place Order 3!
dependency) -

-
-
- -
- --
TEes-me-e--——

use case realization

Department of Computer Engineering 3 Sharif University of Technology

Object-Oriented Design — Lecture 13

i

Lifelines

m A lifeline represents a participant in an interaction - how an instance of a
classifier participates in the interaction.

Each lifeline has an optional name, a type, and an optional selector.
Each lifeline is drawn with the same icon as its type.
Underline the name, type, and selector to show actual instances .

jimsAccount [id = "1234"] : Account

- B’ [3 > oS 7

Y v 2 2
name selector type
p=—"""1
}im:PerS{)n :OrderProcessing Orders.jar @
name classifier E
Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13

Messages

m A message represents a specific kind of communication between two

lifelines in an interaction.

Syntax Name Semantics
aMessage(aParameter) Synchronous The sender waits for the receiver to return from
message executing the message
aMessage(aParameter) _ Asynchronous The sender sends the message and continues execut-
> message ing - it does not wait for a return from the receiver

Message return

The receiver of an earller message returns focus of
control to the sender of that message

The sender creates an instance of the classrﬁer
specified by the receiver

«create» aMessage() 'A Object creation
«destroy» Object
> destruction

The sender destroys the receiver

If its lifeline has a tail, this is terminated with an X

Found message

‘s
Y

I ost message

The sender of the message is outside the scope of the
interaction

Use this when you want to show a message receipt,

but don’t want to show where it came from

The message never reaches its destmatron

May be used to indicate error conditions in which
messages are lost

Department of Computer Engineering

Sharif University of Technology

Object-Oriented Design — Lecture 13

Interaction Diagrams

m Sequence diagrams - emphasize time-ordered sequence of
message sends.

m Communication diagrams - emphasize structural
relationships between objects.

m Interaction overview diagrams - emphasize relationships
between interactions.

= Timing diagrams - emphasize real-time aspects of
interactions.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13 @
~rnS

Sequence Diagrams: General Notation

m Time runs top to bottom.

m Lifelines run left to right:
IiFeIines have dashed vertical tails that indicate the duration of the
ifeline;
lifelines may have activations to indicate when the lifeline has focus
of control;

organize lifelines to minimize the number of crossing lines.

m Place explanatory scripts down the left-hand side of the sequence
diagram.

m State invariants - place state symbols on the lifeline at the
appropriate points.

m Constraints - place constraints in {} on or near lifelines.

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13

Sequence Diagrams: Realization Example 1

RegistrationManager L 0.. Course
courses
0.°*
Use case: AddCourse registration
ID: 8
Brief description: 0.*
Add details of a new course to the system, 3 0. ~
Primary actors: - Student
Registrar students
Secondary actors:
None.
Preconditions: od' AddCourse)
1. The Registrar has logged on to the system. s
- synchronous P lifeline
Main flow: message
1. The Registrar selects "add course”. .) ,
2. The Registrar enters the name of the new course. ‘Registrar egasionMenage
3. The system creates the new course. ' ' ;
' » \J ' object creation message
Postconditions: D M addCourse("UML") : ' : 9
The Registrar selects
1. A new course has been added to the system. ~add course”.
Alternative flows: N «create»
CourseAlreadyExists The system creates uml:Course
the new Course. -
,<. - ' \
notes can form \ : SO i object is
a "script” . message . S created at
describing the | return ' + this point
flow : :

Department of Computer Engineering Sharif University of Technology

Object-Oriented Design — Lecture 13

Sequence Diagrams:

Use case:DeleteCourse

ID: 8

Brief description:
Remove a course from the system.

Realization Example 2

sd DeleteCourse)

Primary actors:
Registrar

Secondary actors:
None.

Preconditions:
1. The Registrar has logged on to the system.

Main flow:

1. The Registrar selects "delete course".

2. The Registrar enters the name of the course.
3. The system deletes the course.

Postconditions:
1. A course has been removed from the system.

% :RegistrationManager umi:Course
:Registrar
¢ deleteCourse("UML") E salf-delegation
findCourse("UML") |
nasted activation .. 5
“" «destroy» ><

goR : object is
: ’ deleted at
' H this point

Alternative flows:
CourseDoesNotExist

Department of Computer Engineering

Sharif University of Technology

Object-Oriented Design — Lecture 13

Sequence Diagrams: Realization Example 3
Use Case

Use case: ProcessAnOrder

ID:5

Brief description:

The Customer raises an order that is then paid for and delivered.
Primary actors:

Customer

Secondary actors:

None.

Preconditions:
None.

Main flow:

1. The use case begins when the Customer actor creates a new order.

2. The Customer pays for the order in full.

3. The goods are delivered to the Customer within 28 days of the date of the final payment.

Postconditions:
1. The order has been paid for.
2. The goods have been delivered within 28 days of the final payment.

Alternative flows:
ExcessPayment
OrderCancelled
GoodsNotDelivered
GoodsDeliveredLate
PartialPayment

Department of Computer Engineering Sharif University of Technology

10

Object-Oriented Design — Lecture 13

Sequence Diagrams: Realization Example 3
Seqguence Diagram

sd ProcessAnOrder)

i :OrderManager :DeliveryManager
:Customer

raiseOrder()

«create» ‘
)| :Order

state invariant '

label
acceptPayment()

constraint

i

{B — A <= 28 days}

acceptPayment() (pald j

deliver()

Y]

PR, {

®
]
A

=
Q
o
<
o
g
Q
@
'E‘
®
k-

Department of Computer Engineering Sharif University of Technology

11

Object-Oriented Design — Lecture 13

i

Reference

m Arlow, J., Neustadt, 1., UML 2 and the Unified Process. Practical
%yégct-ar/ented Ana/yS/s and Design, 2™ Ed. Addison-Wesley,

Department of Computer Engineering Sharif University of Technology

12

