A proposed object-oriented
development methodology

by LeRoy R. Hodge and Mary T. Mock

The object-oriented approach to software
engineering is maturing and evolving as
industry methodologists strive to clarify and
promote its underlying principles. The
object-oriented paradigm has the potential to
increase consistency within the software
development process compared with previous
software engineering approaches. Much of the
current work, however, tends to focus on a
particular phase without addressing the
transition and traceability between phases.
The methodology presented in this paper is
proposed for the full development life-cycle. It
synthesises and enhances several emerging
object-oriented techniques and notations into
a consistent approach. This methodology was
developed to provide a framework for using
object-oriented techniques in the development
of a large simulation and prototyping
laboratory.

1 Introduction

Software system development and maintenance continued
to be challenging. Unlike hardware engineering, where
formal proven techniques have been successfully adopted,
software engineering continues to struggle with a number
of proposed techniques (functional, structured and object-
oriented techniques), all of which claim to provide a sys-
tematic methodology for the software development
process. Based on their practical application, each set of
techniques has demonstrated advantages and disadvan-
tages for software system development. The object-
oriented approach has the potential to provide a more
consistent approach for software system development. It
builds on the strengths of traditional techniques, and
emphasises data abstraction, encapsulation, information
hiding, inheritance, polymorphism and reuse. Given such a
foundation, the object-oriented approach can provide a
consistent development model with which to formalise the
software development process.

In an aggressive attempt to clarify and promote object-
oriented techniques, industry methodologists are advocat-
ing diverse techniques and notations for performing the
analysis, design and implementation phases of the devel-
opment process. This diversity has made it difficult for soft-
ware engineers to adopt a consistent set of steps for the
object-oriented development life-cycle. A recent informal
survey of emerging object-oriented techniques did not
reveal any that adequately and consistently cover the com-

Software Engineering Journal March 1992

plete development life-cycle. The survey did, however,
reveal many useful techniques and notations, especially
those of Ward [1], Coad and Yourdon [2}, Booch [3] and
Bailin [4]. Although not completely object-oriented, the
techniques of McMenamin and Palmer [5] also influenced
the methodology described in this report. The goal of this
paper is to show how these techniques and notations can
be combined into a unified approach for the software
development process.

The primary motivation for this proposed object-
oriented methodology is the need to reduce the develop-
ment risks associated with applying this new approach to
the development of a large-scale high-fidelity simulation
and prototyping laboratory. The laboratory is being devel-
oped to support an advanced research and development
(R&D) project investigating the feasibility of introducing
higher levels of automation into the en route air traffic
control (ATC) system. The laboratory will be used to refine
the concepts for the automated system and assist in
developing the eventual specification of this system. The
development risks include lack of clear and consistent
guidelines for performing each phase of the development
life-cycle; lack of guidelines for transitioning and showing
traceability between phases; lack of automated tools to
support each phase; and lack of practical experience
gained by the development staff in applying object-
oriented techniques to the development process. The deci-
sion to adopt the object-oriented approach was based on
the potential of this approach for integrating the develop-
ment process, and for providing a flexible and maintain-
able system. The laboratory requires a high degree of
flexibility and robustness in order to provide an experimen-
tal platform for the examination, demonstration, evaluation
and specifications of advanced ATC automation concepts.
It was therefore imperative that a clear and consistent
understanding of object-oriented techniques for the devel-
opment life-cycle was outlined before embarking on the
development of the laboratory.

In order to gain a common understanding of object-
oriented techniques and their application to the laboratory
development, the development staff performed a short-
term exercise; this exercise and its results are described in
Reference 6. The methodology described in this paper
resulted from this exercise, and the remaining figures in
this paper are based on documents developed during the
exercise.

The resultant methodology portrays the system from
multiple perspectives, especially in the analysis and design
phases. This provides greater understanding of the systern
content (an information view) and its behaviour (an inter-
active view). The methodology also emphasises the need
to validate the various phases of the development process,
and provides the flexibility to accommodate an iterative

119

object-
relationship
diagram

object descriptions
system-behaviour script
system-behaviour diagrams
inheritance diagrams
client-server diagram
object cross-reference

object cross-refe

y

analer—_—_

scenarios

system

scenario:

I
Analysis i System Design
VAR
i
initial revised entity- 2 ‘ "
requirements requ Ld
A diagram

Products
object descriptions
object-behaviour diagrams
object-behaviour scripts
object-interface diagrams

evaluation

: guple'nwmn: - Testing

o~

Products

/ object descriptions
object-behaviour diagrams
object-interface diagrams
object-behaviour scripts
object-processing diagrams
pseudo-code

object cross-reference

rence

code
and
unit test

software
evaluation
scenarios

integration
and system

S/ testing

acceptance
and product

evaluation

user's
quide

Fig. 1 Process and methodology overview

This approach defines five phases for object-oriented development: analysis, system design, software design, implementation and testing. The

implementation and testing phases are not discussed in this paper; testing and

and cyclic development process. In addition, it highlights
the need for a sophisticated CASE tool to facilitate the
description and examination of the system from various
points of views, and also to provide an infrastructure for
maintaining consistency across these views. This method-
ology will be used for laboratory development and will be
evaluated during this development. Modifications to the
methodology, based on experience with laboratory devel-
opment, are anticipated.

2 Background

The MITRE Corporation is currently conducting an inten-
sive RED effort investigating the feasibility of introducing
higher levels of automation into the en route ATC system.
This multi-phased project is sponsored by the Federal Avi-
ation Administration (FAA) and is called the Automatic En
Route Air Traffic Control (AERA) program. The most
advanced phase of this programme, Advanced AERA Con-
cepts, is sponsored by the Research and Development
Service of the FAA. This programme seeks to determine
the limits to which automation can be usefully extended in
the en route ATC process. A primary motivation for the
AERA programme is the growing need to manage more
effectively, efficiently and safely the increasing traffic levels
and diversity of aircraft capabilities. The primary goals of
the AERA programme are to increase airspace user bene-
fits, and to make significant improvements in ATC system
safety, throughput, economy and productivity.

Advanced AERA proposes three major changes to the

120

implementation (object-oriented programming) are addressed elsewhere.

ATC system. The first is automation of the aircraft separa-
tion function currently performed by the human ATC
specialist. Second is the utilisation of expected improve-
ments to aircraft avionics, surveillance and communica-
tions equipment. The third change is that the role of the
human ATC specialist will change, from being primarily
responsible for aircraft separation to the management of
airspace capacity and throughput in the en route airspace.

As part of this investigation, the AERA Protocenter, a
large-scale high-fidelity laboratory, is being developed to
prototype and simulate key functional and operational
characteristics of the proposed ATC system and the future
environment in which it will operate. Key components of
the envisioned ATC system and the anticipated ATC
environment will be modelled in the Protocenter, alterna-
tive automation approachs will be explored, the proposed
role of the human ATC specialist will be defined and evalu-
ated, and the integration of human and automation func-
tions will be demonstrated and reviewed. The Protocenter
software will be developed over several years as a series of
releases, with each release adding a significant increase in
functionality. The requirements for each release will be
based on the evaluation of the previous release and the
goals and objectives for that release. The evaluation of
each release will also contribute to the preparation of the
specification of the end-state Advanced AERA system. This
specification, as it is refined, will also influence the formula-
tion of the goals and objectives for each release.

The Protocenter will comprise a mix of hardware and
software components operating in a distributed multi-

Software Engineering Journal March 1992

Output Window
ac_id
neighbour list

/ detects
position of
other

describes c:. .. R

pertinent = — = : v :
information v - -
about : i]
Input File ‘ $ | Aircraft
ac_id defines ac_id
course initial
speed attributes
X for
Y
e -
Neighbour List Neighbour }
ac_id Detector
range calculates a max_range
bearing

Fig. 2 Entity-relationship diagram (ERD)

./ specifies
\, number of

| sim_time

s 4 _
Simulation Clock
sim_time 1
wall_time

| step_size
compress_factor

| num_ac
clock_state

Position

J controls '\
simulation 2
via

The ERD is a working model and is used in conjunction with both the requirements analysis and event analysis activities to determine what is the
problem domain. The ERD is a flat model; no attempt is made to show any hierarchical structure.

tasking environment. The development of such a sophisti-
cated software system represents a significant software
engineering challenge, and mandates the adoption of a
disciplined, yet flexible, software development process and
methodology. The object-oriented approach offers many
advantages over ftraditional software engineering
approaches and was therefore chosen as the development
model for the AERA Protocenter.

3 The proposed object-oriented development
methodology

The proposed development process and methodology is a
synthesis of techniques and notations from several
sources. This methodology, however, offers more than just
the sum of its parts. It provides traceability and continuity
through the development life-cycle, primarily since docu-
ments and diagrams produced at early phases are refined
and enhanced in later phases. Another benefit is that it
provides the basis for a smooth transition from one phase
to the next. It also provides multiple perspectives of the
systemn under development, increasing understanding on
the part of analysts, developers and implementers. Finally,
it provides a mechanism for validating the models devel-
oped at each phase to verify that phase’s products.

As shown in Fig. 1, this approach defines five phases for
object-oriented development: analysis, system design, soft-
ware design, implementation and testing. The implementa-
tion and testing phases are not discussed in this report;
testing and implementation (object-oriented programming)

Software Engineering Journal March 1992

are addressed elsewhere [6, 7). These phases are similar to
those defined in traditional development approaches. The
right-to-left arrows in Fig. 1 indicate that the development
process involves cycling between phases; returning to pre-
vious phases for refinement or reorganisation is expected.

The analysis phase considers the system as a solution
to a problem in its environment or domain. During this
phase, fundamental objeets in the system and its domain
are identified. The relationships between these objects, as
well as the attributes and fundamental behaviour of these
objects, are identified. Implementation considerations are
not discussed; unlimited processing and storage are
assumed at this phase. As the analysis phase nears com-
pletion, analysis evaluation scenarios are produced to
validate the model prepared during this phase. The
analysis evaluation scenarios are simple situations pre-
pared to determine if the analysis model adequately covers
all the fundamental requirements of the system.

The system design phase focuses on how the system
works. During this phase, two major activities occur. The
first is specifying details of the behaviour of system objects
and the interaction of these objects. This is a refinement of
objects identified during analysis. The second activity is
identifying additional objects that are required to make the
system work. Like analysis, system design is performed
without considering implementation. In addition, evalu-
ation scenarios are prepared to validate the system design.
System evaluation scenarios are refined versions of the
scenarios prepared for the analysis phase, showing that all

121

i.a._.._“.:_'_*;f.._"u___'_'_m_..__

Change Position Command
Change Course Command
Change Speed Command
Change Sim Step Command
Change Refresh Step Command
Show Deita Time

initialises
modifies

Alrspace

1 [! L
e \W t : e N b il / \
) User Interface i 1 Clock \) Alrcraft
1| Sim State i 1} sim Time [; AC ID
1 | NumAC) regulates™_:! | Sim Step i Position
1 Input File | monitors Refresh Step § Course
1 e e - — | 1| Clock State [Speed
1| Initialise: V ! [
1 Accept Num AC [1 | Change Sim Step [Move
] Accept MaxRange [t : 1 Start Clock [Detect
i Accept Sim Step i : -] Stop Clock [Display
] Accept Refresh Step |] Change Refresh Step [Report Position
i Accept Input File | 7] { Report State
1 Start Sim las . | ‘e F Update
) Pause Sim '
Exit Sim
: Restart Sim :
1 4
1
1
1
1
1

controls/

has a

(Aircraft Window A fNeighbour Delec'or\

Aircraft Display Data
Neighbour Display Data

MaxRange
Neighbour List

Aircraft List
Num AC

Detect Neighbours

Update Aircraft Display
. /

1
[
[
[
1
L
I
1
1
I
t
[}
i
E

Create [
i
t
£
¥
i
[}
)
|’
I
|
1
!
1
I
I
i

Initialise Airspace
Execute Sim Cycle
Change AC State

detects
position of
other

displays N\
information
about /-

Aircraft

|

Fig.3 Object-relationship diagram (ORD)

Data elements in the ERD will become either an object or an attribute of an object in the ORD. This model shows the objects, their attributes,
sub-objects, their behaviour (also called services or methods) and the relationships between the objects. The objects shown in the ORD can be
consolidated into subjects. Subjects are groups of objects that work together to provide related services within the system.

mechanisms necessary to perform the system require-
ments are present in the system design model.

The software design phase addresses how this system
will be implemented with a specific programming lan-
guage on a particular hardware platform and software
suite. The activity in this phase is primarily adding imple-
mentation information to the objects defined in the
analysis and system design phases. As before, evaluation
scenarios are prepared to validate the software design.
These software evaluation scenarios are refinements of
the system evaluation scenarios and provide a complete
set of system testing data. Implementation is expected to
be straightforward from the software design products.

Frequent reviews are essential to any system develop-
ment effort, with any approach and methodology. As a
minimum, a review is needed at the completion of the
analysis, system design and software design phases. The
evaluation scenarios play a major role in these reviews.

The following describes the phases and the correspond-
ing documentation. The documentation is in the form of
textual descriptions and diagrams. Samples are contained
as figures; these figures are based on those produced
during the development exercise.

3.1 Analysis phase

The analysis phase focuses on identifying the fundamental
objects that are contained within the system and its

122

problem domain, and the relationships between those
objects. Analysis answers the question: ‘what is present
within the system and its domain?’ In answering this ques-
tion, three techniques common to traditional development
are used: requirements analysis, information analysis and
event analysis. Requirements analysis identifies ambiguities
and deficiencies within the requirements statement, and
results in a revised requirements statement. Information
analysis identifies the information (or data) contained
within a system. In objectoriented development, this
means identifying objects and their attributes. Event
analysis identifies the behaviour of objects within the
system. Requirements, information and event analysis are
highly inter-related, and their output can provide the basis
for gaining agreement with the system client on the scope
and contents of the system. Although these activities may
be performed sequentially, it is expected that they will be
performed concurrently and that the results of each activ-
ity will confirm the results of the other activities. The result
of the analysis phase is a model of the system within its
domain, where that model consists of objects, their attrib-
utes and behaviour, and relationships among objects.

3.1.1 Requirements analysis: the goal of requirements
analysis is to develop a clear statement of the system
purpose, scope and required functionality. Ideally, this is
provided by the client. In reality, this statement is often not

Software Engineering Journal March 1992

Purpose:

The Aircraft Object simulates the motion of the aircraft along a
trajectory and provides operations that can modify the non-
identifying attributes. The public services provided initialise

the object, report an aircrait’s position, move the aircraft, detect
neighbours, display aircraft information and neighbour list,
update attribute values and return attribute information. The

Sub-object of: {}

Sub-objects
(has_a relationship) Aircraft Window

Inheritance/Superclass {}
(is_a relationship)

Attributes AC ID

Position

Course

Speed
*Neighbour_List
*AC_List
Create()
Move()

Detect()

Display()

Services Provided

Report_State()
Update()

Services Required

Service Defintions

private services perform the updating of aircraft attributes.

Neighbour Detector

Report_Position()

Detect = (Neighbour Detector Object)
Display == (Aircraft Window Object)

Will be added during System Design phase

Fig. 4 Object description (OD)

The OD is a textual description of each object. it serves as a repository for the detailed characteristics of each object in the ORD. The ODs are core
documents that are progressively updated and expanded through the development life-cycle.

provided, or if it is, it is ambiguous and inconsistent. In
addition to required functionality, the requirements state-
ment must include all client concerns and constraints,
such as performance requirements.

Two key questions that the analyst must ask in per-
forming requirements analysis are

e what do I need to know about the problem domain?
e what and who are sources of information on the
problem domain?

In answering the first question, the analyst identifies the
scope of the system. Answers to the second question may
include the client, the analyst's own experience and other
sources unique to the problem domain. The product of
requirements analysis is a statement of purpose, scope
and functionality, and typically will be a refinement of the
original requirements statement. (More detailed dis-
cussions of requirements analysis can be found in Refer-
ence 8)

3.1.2 Information analysis: the goal of information
analysis is to model entities in the problem domain and
the relationships among these entities. Entities are the
underlying data elements that describe what is in the
problem domain. The initial goal is simply to identify which
data elements are in the problem domain and to establish
relationships between these elements. Since information
analysis is an investigative process, the analyst should use
all available sources to identify entities with the problem
domain.

This model is represented graphically in an entity-
relationship diagram (ERD) (Fig. 2). The ERD is also called
an information model. It is primarily a flat model; no

Software Engineering Journal March 1992

attempt is made to show any hierarchical structure. The
ERD is a working model] and is used in conjunction with
both the requirements analysis and event analysis activities
to determine what is in the problem domain.

Once entities have been identified and represented in
the ERD, the next step is to translate them into objects.
This is done by determining what object each entity best
describes and ascribing the entity to that object. The ques-
tion to be asked is: what object does this data element
best describe? The data element becomes either an object
or an attribute of an object. This is represented in the
object-relationship diagram (ORD), shown in Fig. 3. This
model shows the objects, their attributes, sub-objects, the
behaviour that they perform (also called services or
methods) and the relationships between the objects.

The objects shown in the ORD can be consolidated into
subjects. Subjects are groups of objects that work
together to provide related services within the system. This
higher level grouping further decomposes the problem
domain into manageable units, and thereby provides a
hierarchy. Subjects are indicated by the dashed lines
around groups of objects (Fig. 3).

A textual description of each object, called the object
description (OD), details the characteristics of each object
in the ORD, as shown in Fig. 4. The ODs are core docu-
ments that are progressively updated and expanded
through the development life-cycle. Another document to
be updated and expanded through the development life-
cycle is the object crossreference (OCR), as shown in
Table 1. The OCR is a tabular form of all objects, the ser-
vices they perform and the services they utilise from other
objects. As a concise representation of the objects, the
OCR is expected to be most valuable in subsequent main-

123

tenance activities. The OCR is derivable from the ODs and
ideally would be automatically, rather than manually, gen-
erated.

Finally, as objects and their attributes and services are
identified, inheritance relationships between object classes
may be observed. Inheritance is a generalisation—
specialisation relationship, where the superclass is the gen-
eralised version of the more specialised subclass. These
relationships are shown in an inheritance diagram, as
shown in Fig. 5. (A more detailed discussion of information
analysis and information modelling can be found in Refer-
ences 1 and 9)

3.1.3 Event analysis: like information analysis, event
analysis serves to identify data elements in the problem
domain and then consolidates them into objects. In per-
forming event analysis, the analyst views the system as a
stimulus-response machine that responds to a series of
external stimuli. The goal is to capture system behaviour
from an external viewpoint. Event analysis can be per-
formed in conjunction with information analysis or separa-

tely as a validation exercise for the analysis phase. In this
methodology, event analysis is expected to be used pri-
marily as validation.

Given a statement of the system'’s primary purpose, all
activities that the system will perform in response to exter-
nal stimuli can be determined. From this list of activities,
the analyst must identify the activities that are fundamental
to the system and that the system must perform in direct
support of its stated purpose. These activities are classified
as fundamental activities because without them the need
for the systern ceases to fulfil its primary purpose. All other
activities that are performed in support of the fundamental
activities are classified as custodial. These stimuli and
response activities are listed in the system-behaviour
scripts (SBS), as shown in Table 2.

It is important to identify the overall system behaviour
from an external viewpoint. This is represented by a
system-behaviour diagram (SBD) (Fig. 6). The SBD is a
state-transition diagram that captures the externally visible
states of the system, as well as the possible transitions

Report Position
Report State

Table 1 Object cross-reference (OCR)
Object Providing
Object Services Provided Services Required Service
Aircraft Move
Create

Display Display Aircraft Window
Detect Detect Neighbour Detector
Update
Aircraft Window Create
Display
Neighbour Detector Create
Detect Report Position Aircraft
Clock Change Sim Step
Change Refresh Step
Start Clock Report Clock State Clock
Stop Clock OK to Tick Clock
User Interface Create Update Clock Clock
Setup Update State Airspace
Exit
Start
Pause Execute Sim Cycle Airspace
Resume Display Sim Perf Window
Clock Create
Update Clock Display Sim Perf Window
OK to Tick
Report Clock State
Sim Perf Window Display
Airspace Create Move Aircraft
Execute Sim Cycle Create Aircraft
Update State Report State Aircraft
Report Display Aircraft
Detect Aircraft
Update Aircraft

expanded through the development fife-cycle.

The OCR is a tabular form of all objects; it shows the services they perform and the services
they utilise from other objects. As a concise representation of the objects, the OCR is expected
to be most valuable in subsequent maintenance activities. The OCR is derivable from the ODs
and would ideally be automatically, rather than manuaily, generated. The OCR is updated and

124

Software Engineering Journal

March 1992

between those states. The stimuli that trigger state tran-
sitions may be the same as the stimuli listed in SBS.

The next step is to identify the data elements that arrive
with each stimulus and that comprise each response. Most
of these data elements should have aiready been identified
during information analysis, and thus will confirm the valid-
ity of that set of entities. Newly identified entities should be
added to the ERD as identified.

As in information analysis, once the data elements have
been identified, the next step is to consolidate these data
elements into objects. This process is the same as in infor-
mation modelling and again should complement the
results of information analysis. Thus, the ORD should be
modified to include any newly identified objects.

In identifying the objects from a stimulus-response per-
spective, the analyst has identified which object performs
which activities in the system. This associates system
behaviours with specific objects. Object behaviour is listed
in the OD. (A more detailed description of event analysis
can be found in Reference 5.)

3.1.4 Transition to system design: the final product of
domain analysis is the client-server diagram (CSD) (Fig. 7).
The CSD provides a more detailed view of the interaction
between objects in the system than that shown in the ORD.
As such, the CSD provides a transition between analysis
and system design. The direction arrows point from client
to server, the multiplicity (or n-ary) relationships between
objects are shown, subject groupings are shown and mes-
sages between objects are shown.

It is important to note that this development approach is
a cyclic process; returning to previous phases for refine-
ment or reorganisation is expected. It is also important to
note that analysis should be a rigorous and complete

position
course
speed

Create
Move
Report State
Update

Report Position

Neighbour_Detecting_Aircraft

neighbour_detector
aircraft_window

Detect
Display

Fig.5 Inheritance diagram (ID)

The ID shows the generalisation—specialisation (inheritance) relationship
between object classes, where the superclass is the generalised version of
the more specialised subclass.

Table 2 System-behaviour script (SBS)

Purpose of the System (Raison d’étre)

The purpose of the system is to serve as a simulation system to demonstrate an

airborne air traffic control (ATC) concept, in which individual aircraft have the capability of
detecting neighbouring aircraft and displaying relevant information.

Activities
Stimulus Response
Fundamental Activity

Perform work for Simutation Cycle
— Update AC position

- Detect neighbouring aircraft

- Update Display

Next Simulation_Cycle Signal

Custodial Activities

Next Refresh Cycle Signal Update Display with AC information

User Command Perform appropriate action(s) for User Command
— Setup - Setup initial simulation characteristics

- Update — Modify simulation characteristics

- Start

- Pause

— Restart

— Exit

The SBS depicts the system as a stimulus-response machine that responds to a series of external
stimuli. The SBS describes, at a high-level, the system's response to each stimulus. Given a state-
ment of the system's primary purpose, all activities that the system performs in response to external
stimuli can be determined. Activities that are fundamental to the system and that the system must
perform in direct support of its stated purpose are classified as fundamental activities. All other
activities that are performed in support of the fundamental activities are classified as custodial.

Software Engineering Journal March 1992

125

nitialising

Start

l_!____, it
Running Bxi

Exit

Pause Resume
Y
Exit
r Paused > Exiting
Resume | Modify
y
Modifying |20t

Fig. 6 System-behaviour diagram (SBD)

The SBD is a state-transition diagram that captures the extemally visible
states of the system, as well as the possible transitions between those
states.

process. By viewing the system from both information and
event perspectives, the analyst is more confident that the
problem domain is being properly decomposed. This is
especially important because analysis sets the framework
for design and implementation. This is a strategic point at
which to hold a review with the customer.

3.2 System design

The system design phase focuses on defining how the
system works. During this phase, unlimited computing and
storage are assumed, and so implementation details are
not addressed. Two primary activities occur during this
phase; identifying additional objects that are specific to the
system design, and refining the objects that were identified
during analysis. A linked list is an example of an object
that is specific to system design, but would not have been
identified during analysis. In the simple Figures, an aircraft
object is a fundamental object in the system and was iden-
tified during analysis. A linked list object could be used to
manipulate a collection of aircraft instances. In this situ-
ation, the linked list is not a fundamental object, but serves
a purpose in defining how the system works, and thus is
specific to system design.

In object-oriented development, the way that the system
works is determined, to a large degree, by the interaction
of the objects. Defining this interaction clearly and com-
pletely is a major goal for the system design phase, and it
is the primary way in which the objects identified during

Ypdate |

{Stant} Continue |

Rapon)

User
®| | (getup| Stat| Pauss |
Continus | Stap)
; ATC Simulation
1
1
1
1
(Create | Populae | :
Update | Hepary]
T
1

(Exéoute, Siny Oydle) 7 = m - =

JR O P : {Move | Display | Oreate |
""""""""""" Detect | Update | Report
Start)

Performance

System
Performance
Window

(Update)

------------------------- (Dispiay)

Display

Aircraft_Window

(Create | Display)

Neighbour_Detector
Position)

(Detect_Neighbours

Display

| Create)

Fig. 7 Client-server diagram (CSD)

The CSD provides a more detailed view of the interaction between objects in the system than that shown in the ORD. As such, the CSD provides a
transition between analysis and system design.

126

Software Engineering Journal March 1992

: f Aircraft

Attributes
ACID
Position (x,y)
Course
Speed

Create ()

Services Provided

4 Create (ID, AC_Data, Max_Range)

e Display (AC_Data, Neighbour_List)

N Move (Sim_Time)

Airspace T
S — Detect (AC_List)
(1:1) <
Display ()
|
e/ Report_State ()

Update (AC_Data)
1

N —
Neigh
leighbour Detector I Report_Position ()

(M:1)

A vy \

*AC_Data = Position, Caurse, Speed

Fig. 8 Object-inferface diagram (OID)

The OID depicts the interaction of objects from the perspective of an individual object. The OID would be typically derived from the CSD, which shows
object interaction for the system. The CSD shows object relationships at a system level; the OID increases the level of detail and focuses on a single

object, rather than the full system.

analysis are refined during this phase.

The object-interface diagram (OID) represents this inter-
action of objects from the perspective of an individual
object. The OID, shown in Fig. 8, would typically be
derived from the CSD, which shows object interaction for
the system. The CSD shows object relationships at a
system level; the OID increases the level of detail and
focuses on a single object, rather than the full system.
Objects that access the target object’s services are shown,
as well as other objects’ services that are accessed by the
target object. The OID provides a complete view of an
object’s interaction with other objects. During analysis,
system behaviour was represented by the system-
behaviour diagram and system-behaviour script. Analo-
gous representations of individual object behaviour are
shown in the object-behaviour diagram (OBD) and object-
behaviour scripts (OBS). Since not every object has inter-
esting states, an OBD will not be necessary for every
object. The ODS is shown in Table 3. Since the OBD is
similar to the SBD (Fig. 6), its system-evel counterpart pro-
duced during analysis (a sample OBD) is not shown here.

The OD and OCR produced during analysis are refined
during system analysis, both to include more information
about object behaviour. The OD is expanded to include a
service definition for each service provided by the object.
The service definition includes input and output parameter
names and types. As in analysis, the OCR is a condensed
tabular representation of information about all objects; at
systemn design, it now includes columns for services’
parameters. In addition, the OCR is expected to be auto-
matically generated.

Software Engineering Journal March 1992

3.3 Software design

The software design phase refines the products of the
system design phase to address the implementation-
specific details of the proposed system. The target hard-
ware platform and software suite are addressed, although
specific implementation language details are not.

The OD, OBD, OID, OBS and OCR may be expanded
from their counterparts from system design. However,
which are needed for software design depends largely on
the specifics of the system and the development platform.
In general, if implementation details are relevant for a par-
ticular diagram, that diagram is refined; otherwise, the
diagram produced during system design is used without
modification. For many objects, the OBD, OID and OBS
do not need to be refined for software design. The OD is
expected to be refined for all objects and expanded to
include information such as operating system calls to be
used, and which methods are public and private. A
private method is intended for use only by that object,
whereas a public method is available for use by other
objects. Identification of public and private methods is
useful for software design, even when the implementation
language does not support this distinction. Units of
measure for the object attributes should also be included
in the refined OD and reviewed for consistency within
groups of communicating objects.

The object-processing diagram (OPD) is used to rep-
resent the internal processing required for an object. It
shows public and private methods, as well as which
methods read and set the object’s attribute values. Input

127

and output parameters are also shown for each method.
An example of an OPD is shown in Fig. 9.

Pseudo-code may be used for objects with complex
algorithms or those that have especially complicated
aspects to their implementation. This would again be
subject to the designers’ judgment.

4 Conclusions

This methodology provides a straightforward approach to
object-oriented system development with four major bene-
fits. First, effort is concentrated in the analysis phase,
decreasing through latter phases. This is expected to
reduce the cost of identifying and fixing the inevitable
errors in the system, and thereby reduce the overall
systern development effort. Secondly, the system is viewed
and represented from multiple perspectives; as the overall
system, as individual objects and interacting objects. This
results in documentation that is readily understood by the
appropriate person, whether that is the customer, analysts,
designers, programmers or testers. Thirdly, the effort and
documentation in latter stages are based largely on those
in earlier stages. This results in traceability throughout the
complete development cycle. Finally, by relying on the
analysts' and designers’ judgment, especially in latter
stages, the methodology is flexible in order to accommo-
date different problem domains and systems.

The multiple perspectives of the system under develop-
ment can provide a thorough understanding of both the
system content and its behaviour. It is important to point

out that not all views (and supporting documentation) are
required for all objects in the system. These views should
be used as appropriate. However, by developing these
various views early in the development process, a cleaner
and more consistent design and implementation can be
achieved. The need for a sophisticated CASE tool to facili-
tate the description and examination of the system from
various points of view, and also provide an infrastructure
for maintaining consistency across these views, is high-
lighted by this proposed methodology.

The methodology also emphasises the need to validate
the various phases of the development process, and pro-
vides the flexibility to accommodate an iterative and cyclic
development process.

5 Acknowledgments

The authors would like to thank others who participated in
developing this methodology: Randy Crawford, Tom
Hsiao, Mark Krause, Pete Lane, John McCarron, Art
McClinton, Jim Reierson, Dwight Shank, Ghina Siddiqui
and Frank Sprague. We would also like to thank Robert N.
Leggett and Anne Deslattes for their thorough review and
excellent suggestions, and our management and sponsor
for encouraging and supporting this work.

6 References

[1] WARD, P.T.: ‘The CASE realtime curriculum’. Software
Development Concepts, New York, 1989

Table 3 Object-behaviour script (OBS): aircraft

Message

Behaviour Script

Create
(ID, Position, Course,
Speed, Max_Range)

instantiate aircraft and initialise values:
- set initial position (x, y)

- set initial course

— set initial speed

Instantiate sub-objects

— aircraft window

— Neighbour Detector (Max_Range)

Move (Sim_Time)

Calculate new aircraft position based on current
Sim_Time/Sim_Step

Update (Position, Course
Speed)

Reset appropriate AC state data:
— save new AC position (x, y)

— save new AC course

— save new AC speed

Report_State()

Return the values of the AC state data

Disptay()

Get neighbour data from my neighbour detector

(send Report_State message)

Forward Display message to sub-object Aircraft Window:
- i.e., display (Position, Course, Speed, Neighbour List)

Detect (AC_List)

Forward Detect message to sub-object Neighbour Detector

~ i.e., call my neighbour detector passing it a list of all aircraft in
the airspace. It will, in turn, query each AC for position and
compare with MaxRange to determine if AC is my neighbour

Report_Position()

Return AC position (x, ¥)

each stimulus.

The OBS depicts an object as a stimulus-response machine that responds to a series of external
stimuli (invocation of its methods). The OBS presents, at a high-level, an object’s response to

128

Software Engineering Journai

March 1992

Airspace

ID, AC_Data, Max_Range

Aircraft

ID, AC_Data, Neighbour_List

Neighbour_List

Window

-

parameters

Create

AC_Data

Neighbour_List

Initialise

Position

AC_Data

Sim_Time

Report
Position .

l
Position ‘

/
Neighbour | AC_List, Position Neighbour
Detector Neighbour_List Detectol

*AC_Data = Position, Course, Speed

Fig. 9 Object-processing diagram (OPD)

The OPD is used to represent the internal processing required for an object. It shows public and private methods, as well as which methods read and set
the object's attribute values. Input and output parameters are also shown for each method.

[2] COAD, P., and YOURDON, E.: ‘Object-oriented analysis’
(Prentice Hall, Englewood Cliffs, New Jersey, 1990)

[3] BOOCH, G.: ‘Object-oriented design with applications’
(Benjamin/Cummings, Redwood City, California, 1990)

[4] BAILIN, S.: ‘An object-oriented requirements specification
method’, Commun. ACM, 1989, 32, (5), pp. 608-623

[5] MCMENAMIN, SM,, and PALMER, J.F.: ‘Essential systems
analysis’ (Yourdon Press, New York, 1984)

[6] MOCK, M.T., and HODGE, LR.: ‘An exercise to prototype
the object-oriented development process’. The MITRE Cor-
poration, McLean, Virginia, 1991

7] MYERS, G.J.: ‘The art of software testing’ (John Wiley &
Sons, New York, 1979)

[8] COX, B.J.: ‘Object oriented programming: an evolutionary
approach’ (Addison-Wesley, Reading, Massachusetts, 1986)

[9] GAUSE, D.C,, and WEINBERG, GM.: ‘Exploring require-
ments: quality before design’ (Dorset House, New York,
1986)

[10] SCHLAER, S., and MELLOR, S.J.: ‘Object-oriented systems
analysis: modeling the world in data’ (Yourdon Press, Engle-
wood Cliffs, New Jersey, 1988)

7 List of abbreviations

AERA = Automated En Route Air Traffic Control
ADT = attribute definition table

Software Engineering Journal March 19892

ATC = air traffic control
CASE = computer-aided software engineering
CSD = client-server diagram
ERD = entity-relationship diagram
FAA = Federal Aviation Administration
OBD = object-behaviour diagram
OBS = object-behaviour script
OCR = object cross-reference
OD = object-description
OID = objectinterface diagram
OPD = object-processing diagram
ORD = object-relationship diagram
RE&ED = research and development
SBD = system-behaviour diagram
SBS = system-behaviour script
SRM = stimulus-response machine

The paper was first received on 4 March and in revised form on
26 September 1991.

The authors are with the Center for Advanced Aviation System
Development, The MITRE Corporation, 7525 Colshire Drive,
Mclean, Virginia 22102-3481, USA.

129

